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Abstract

We present an equilibrium model of politics in which political platforms com-

pete over public opinion. A platform consists of a policy, a coalition of social

groups with diverse intrinsic attitudes to policies, and a narrative. We conceptu-

alize narratives as subjective models that attribute a commonly valued outcome

to (potentially spurious) postulated causes. When quantified against empirical

observations, these models generate a shared belief among coalition members over

the outcome as a function of its postulated causes. The intensity of this belief

and the members’ intrinsic attitudes to the platform’s policy determine the extent

to which the coalition is mobilized. Only platforms that generate maximal mo-

bilization prevail in equilibrium. Our equilibrium characterization demonstrates

how false narratives can be detrimental to the commonly valued outcome, and

how political fragmentation leads to their proliferation. The false narratives that

emerge in equilibrium have a flavor of “scapegoating”: they attribute good out-

comes to the exclusion of social groups from ruling coalitions.
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1 Introduction

Success in democratic politics requires the mobilization of public opinion, which takes

various forms: rallies, petitions, social media activism, and ultimately voter turnout.

Shifts in public opinion can explain which policies get implemented and which coalitions

of social groups form around them (Burstein (2003)). In turn, opinion makers (politi-

cians, news outlets, pundits) use past performance of policies and coalitions as raw ma-

terial for shaping public opinion. This paper is an attempt to shed light on this interplay.

Our starting point is the idea that narratives are a powerful tool for mobilizing public

opinion. This is a familiar idea with numerous expressions in academic and popular

discourse. After Senator John Kerry lost the 2004 presidential elections, his political

strategist Stanley Greenberg said that “a narrative is the key to everything” and that

Republicans had “a narrative that motivated their voters”.1 Shanahan et al. (2011)

write: “Policy narratives are the lifeblood of politics. These strategically constructed

‘stories’ contain predictable elements and strategies whose aim is to influence public

opinion toward support for a particular policy preference”. And Stone (1989) writes:

“... political actors use narrative story lines ... to manipulate so-called

issue characteristics ... As one side in a political battle seeks to push a

problem into the realm of human purpose, the other side seeks to push it

away from intent toward the realm of nature or to show that the problem

was intentionally caused by someone else.”

This paper is a theoretical study of how narratives shape public-opinion battles in het-

erogeneous societies. We explore what makes narratives more or less popular, and what

role they play in the determination of policies and the formation of ruling coalitions.

We formalize political narratives as causal models that attribute public outcomes

(e.g., economic growth) to postulated causes. Echoing the quote from Stone (1989),

these causes can be policies (e.g., attributing growth to economic policy), governing

parties (e.g, attributing growth to whether Democrats or Republicans were in power —

without getting into the specific policies they implemented while in power), or external

elements beyond governments’ control (e.g., attributing growth to technological shocks).

By this view, a false narrative is a misspecified causal model that attributes outcomes

to wrong causes.

1See William Safire’s New York Times article titled “Narrative” (https://www.nytimes.com/
2004/12/05/magazine/narrative.html).
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In our model, a narrative generates a probabilistic belief regarding the effect of a

postulated cause on the outcome by “estimating” the empirical correlation between

them. A false narrative can produce wrong beliefs by assigning an incorrect causal

meaning to the correlation it highlights. The stronger this correlation, the stronger the

causal belief that the narrative generates—which translates into greater mobilization of

social groups behind the political platform employing that narrative. Thus, competition

between platforms for public support is, to some extent, a battle between conflicting

narratives over what drives public outcomes.

We consider a heterogenous society that consists of multiple social groups having

different instrinsic attitudes to policies. We think of a social group as a collection of

agents with shared ideological, socioeconomic or ethnic/religious characteristics, as well

as a distinct political representation (in line with Lipsett and Rokkan’s (1967) “cleavage

theory” according to which there is a fixed mapping between voting blocs and political

parties). For example, society can be divided into left and right wings, possibly with

finer subdivisions. Other examples include the Flemish and French parties in Belgium,

or the various ethnic and religious parties in Israel.

We make the simplifying assumption that policies are the only true cause of public

outcomes. The differences between the intrinsic policy attitudes of social groups will

naturally give rise to correlations between the structure of ruling coalitions, the poli-

cies they implement, and these policies’ outcomes. A false narrative can exploit these

correlations and causally attribute the outcome solely to a social group’s power status

(i.e., whether it belongs to the ruling coalition), even though in reality this correlation

is due to confounding by the implemented policies.

For illustration, suppose coalition C usually refrains from taxing wealth. As a result,

social inequality tends to rise when C is in power. A rival coalition C ′ may exploit

this correlation and spin a false narrative that, in order to reduce inequality, we only

need to keep the social groups behind C out of power. Because this narrative does

not attribute the outcome to its true cause (namely, tax policy), it enables C ′ to gain

support: On the one hand, C ′ can act exactly like C by not proposing an unpopular

wealth tax; on the other hand, it can claim that by elbowing out C it is doing something

to lower inequality, which is popular. Thus, in a sense, C ′ uses C as a “scapegoat” to

hide the link between an attractive policy and its unattractive consequences. Our main

objective in this paper is to understand how such false narratives can gain ascendancy,

what form they take, and how they shape public policies and ruling coalitions.
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In our setting, a policy, a coalition of social groups, and a narrative form a political

platform. Given a long-run joint empirical distribution over prevailing platforms and

public outcomes, different narratives may induce conflicting beliefs regarding the con-

sequences of policies and coalitions. The long-run frequencies of prevailing platforms

and outcomes affect narrative-based causal beliefs, which (through their effect on po-

litical mobilization) determine the platforms that prevail. This feedback effect suggests

a need for an equilibrium notion of prevailing political platforms.

We define an equilibrium as a probability distribution over prevailing platforms, such

that every platform in its support maximizes the total mobilization of the social groups

belonging to the platform’s coalition. This definition captures the idea that a platform’s

success depends on the strength of its popular support (in terms of the number and size

of participating social groups as well as the intensity of their participation). It does

so in the spirit of competitive equilibrium, as in Rothschild and Stiglitz (1976). The

backstory is that there is “free entry” of office-motivated political entrepreneurs who

propose policy-narrative combinations. If a particular combination attracts stronger

support than the current combination, the former will overthrow the latter. Eventually,

the platform that maximizes total support will prevail.2 One advantage of our approach

is that it avoids the nitty-gritty of modeling the formation of parliamentary coalitions

(which is only partly related to battles over public opinion, our main concern here).

Using this formalism, we obtain several insights. First, in addition to the true narra-

tive that attributes outcomes to policies, two types of false narratives emerge in equi-

librium, in a way that echoes the above quote from Stone (1989). The first type is a

“denial” narrative that does not attribute outcomes to any endogenous variable (thus

implicitly attributing it to external forces). The other type is a “tribal” narrative that

attributes a good public outcome to the exclusion of some social groups from the ruling

coalition. In a political speech or a social-media post, such a narrative could appear as

“national security is strong when the Left is out of power.”

Recent public debates over high inflation, which have involved competing claims

over its causes, are suggestive of these types of narratives. Some narratives attribute

inflation to government actions (fiscal expansion), others to external factors (global

supply-chain disruptions), and yet others assign credit or blame solely to the party in

power, without attempting to link inflation to the party’s policies. A selection of press

2Section 4 illustrates such a dynamic process and Section 7 leverages it to offer a foundation to our
equilibrium concept.
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quotes demonstrates the form of these conflicting narratives:

“As prices have increased ... some Democrats have landed on a new culprit:

price gouging ... For Democrats, it is a convenient explanation as inflation

turns voters against President Biden. It lets Democrats deflect blame from

their pandemic relief bill, the American Rescue Plan, which experts say

helped increase prices.” 3

“Democrats have blamed supply chain deficiencies due to COVID-19, as well

as large corporations and monopolies.” 4

“As the midterm elections draw nearer, a central conservative narrative is

coming into sharp focus: President Biden and the Democratic-controlled

Congress have made a mess of the American economy.” 5

The distinction between a false narrative that attributes outcomes to whoever is in

power and a more accurate narrative that attributes outcomes to policies appears in

Paul Krugman’s recent article about the politics of inflation:

“... voters aren’t saying, ‘Trimmed mean P.C.E. inflation is too high because

fiscal policy was too expansionary’. They’re saying, ‘Gas and food were

cheap, and now they’re expensive ..’. So when people say — as they do —

that gas and food were cheaper when Donald Trump was president, what

do they imagine he could or would be doing to keep them low if he were still

in office?”6

We wish to emphasize that we do not argue that our specific model matches the infla-

tion scenario. Nevertheless, we believe it offers insights into the interplay between the

popularity of inflation narratives and objective statistical reality.

Our second insight is that the false narratives employed in equilibrium sustain poli-

cies that would not be taken if the only prevailing narrative were the true one (which

3https://www.nytimes.com/2022/06/14/briefing/inflation-supply-chain-greedflation.html
4https://fivethirtyeight.com/features/what-democrats-and-republicans-get-wrong-about-inflation/
5https://www.nytimes.com/2022/06/11/opinion/fed-federal-reserve-inflation-democrats.html
6https://www.nytimes.com/2022/06/02/opinion/inflation-biden.html. See also Weaver (2013) and

Sanders et al. (2017).
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correctly attributes outcomes to policies). The function of false narratives is to resolve

the cognitive dissonance between the intrinsic appeal of a policy and its objective in-

adequacy for the desired outcome. This is achieved by deflecting responsibility for the

outcome from its true cause to spurious causes.

Moreover, when society becomes more politically fragmented (in the sense that finer

social groups have distinct political representation), tribal narratives proliferate and can

lead to further crowding out of the true narrative and the policy it justifies. Greater

polarization of attitudes toward policies has a similar equilibrium effect. We illustrate

these points in a setting where social groups and tribal narratives are defined by a

collection of binary attributes.

Finally, we characterize the structure of coalitions that form in equilibrium. False

narratives give rise to coalitions that would not form if only the true narrative prevailed.

In particular, when a political platform employs a tribal narrative, it excludes social

groups that do not oppose the platform’s policy (indeed, they implement the same

policy when they are in power). While this exclusion shrinks the coalition and might

therefore seem to hurt its mobilization, it has the compensating effect of strenghtening

the causal belief that the tribal narrative generates. Thus, our results suggest that the

mobilizing power of false tribal narratives has substantial implications for implemented

policies and prevailing social coalitions.

2 Related Literature

Eliaz and Spiegler (2020) pioneered the formalization of political narratives as causal

models, whose adoption by agents is driven by the (potentially false) prospective beliefs

these models generate. The present paper borrows these basic ingredients and incor-

porates them into a new political-economics framework, offering a number of modeling

innovations and asking fundamentally new questions. In contrast to Eliaz and Spiegler

(2020), this paper considers a heterogeneous society and is the first to explore how false

narratives serve as the “glue” of social coalitions and drive their structure. Furthermore,

this paper investigates a new question of whether successful narratives attribute out-

comes to what ruling parties do or to who they are—as in “tribal” narratives that emerge

from our analysis. Finally, another novel contribution of this paper is to study the role of

narratives in the link between political fragmentation and the quality of public policies.

More broadly, this paper is related to a strand in the political-economics literature
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that studies voters’ belief formation according to misspecified subjective models or

wrong causal attribution rules (e.g., Spiegler (2013), Esponda and Pouzo (2017), Izzo

et al. (2021), and Levy et al. (2022)). In particular, the latter paper studies dynamic

electoral competition between two candidates, each associated with a different subjec-

tive model of how two policy variables map into outcomes. One model is complete and

correct; the other is a “simplistic” model that omits one of the policy variables. Voter

participation is costly; stronger beliefs lead to larger voter turnout. The long-run be-

havior of this system involves ebbs and flows in the relative popularity of the two mod-

els, not unlike the dynamics of platform popularity that underlie equilibrium in our

model (see Section 7).7

The general program of studying the behavioral implications of misspecified causal

models is due to Spiegler (2016; 2020). In their general form, causal models are formal-

ized as directed acyclic graphs, following the Statistics/AI literature on graphical prob-

abilistic models (Cowell et al. (1999), Pearl (2009)). The causal models in this paper fit

into the graphical formalism, but do not require its heavy use because they take a rela-

tively simple form (related to the misspecified models in otherwise very different works,

such as Jehiel (2005), Eyster and Piccione (2013) or Mailath and Samuelson (2020)).

Therefore, in this paper, graphical representations of causal models remain mostly in

the background.

Given the fluidity of the notion of narratives, it naturally invites diverse formaliza-

tions. Bénabou et al. (2018) focus on moral decision-making and formalize narratives

as messages or signals that can affect decision-makers’ beliefs regarding the externality

of their policies. Levy and Razin (2021) use the term to describe information struc-

tures in game-theoretic settings that people postulate in order to explain observed be-

havior. Schwartzstein and Sunderam (2021a; 2021b) propose an alternative approach

to “persuasion by models”, where models are formalized as likelihood functions and the

criterion for selecting models is their success in accounting for historical observations.

Shiller (2017) focuses on the spread of economic narratives in society, using an epidemi-

ological analogy.

Our model involves competition between models (some of which are misspecified).

The public selects between these models according to a criterion that reflects motivated

reasoning. Cho and Kasa (2015) and Ba (2023) offer dynamic analyses of competing

7For a survey on the broader field of behavioral political economy, see Schnellenbach and Schubert
(2015).
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models, when the selecting criteria involve empirical misspecification tests. Montiel Olea

et al. (2022) study competition between models in the context of experts who vie for

the right to make predictions.

The political science literature has long acknowledged the power of narratives in gar-

nering public support for policies and in mobilizing people to protests or rallies (see

Polletta (2008)). In particular, the so-called “narrative policy framework” was devel-

oped as a systematic empirical framework for studying the role of stories or narratives

in public policy. Studies employing this framework have argued that narratives have a

greater influence on the opinions of policymakers and citizens than does scientific infor-

mation (see the papers mentioned in the Introduction, or Jones et al. (2014)).

Finally, there are a few recent attempts to study political and economic narratives

empirically, using textual analysis. Mobilizing public opinion often takes the form of

texts (speeches, op-eds, tweets). What we observe in these texts are qualitative stories

more than bare quantitative beliefs. Ash et al. (2021), Andre et al. (2022) and Macaulay

(2022) have performed manual and machine analysis of these texts in order to elicit

prevailing narratives in various contexts. Ambuehl and Thysen (2023) and Charles and

Kendall (2023) used experimental methodology to shed light on the source of causal

narratives’ appeal.

3 A Model

We begin by describing the model’s primitives. Let y ∈ {B,G} be a public outcome.

There is a social consensus that y = G is a “good” outcome. Let a ∈ A = {b, g}
be a policy. Policies cause outcomes according to the objective conditional probability

distribution

Pr(y = G | a) =

{
q if a = g

0 if a = b
, (1)

where q ∈ (0, 1].8

Let N = {1, ..., n} be a set of social groups, where n ≥ 2. A coalition is a non-

empty subset C of N . Define a function f : N ×A→ R+. We refer to f(i, a) as group

i’s mobilization propensity given policy a. This captures group i’s intrinsic attitudes

8The assumption that Pr(y = G | b) = 0 is made for tractability. We believe that our qualitative
results will hold whenever Pr(y = G | b) < q.
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toward a. For example, when y = G represents low inflation and g (b) represents

fiscal restraint (expansion), f(i, b) > f(i, g) means that group i finds fiscal expansion

intrinsically more attractive than fiscal restraint. For all i, f(i, a) > 0 for at least one a.

Using these primitives, we now present the key definitions of the model.

Narratives

To formulate our notion of narratives, we introduce a language that encodes policies

and coalitions. Let x = (x0, ..., xn) be a profile of binary variables, where x0 ∈ {b, g}
and xi ∈ {0, 1} for every i > 0. Define the following function that assigns values of x to

every policy-coalition pair (a, C): x0(a, C) = a, and for i > 0, xi(a, C) = 1 if and only

if i ∈ C. For instance, if N = {1, 2, 3} and (a, C) = (g, {2, 3}), then x = (g, 0, 1, 1). If

C is interpreted as a ruling coalition, the variable xi(a, C) encodes the “power status”

of group i—i.e., whether it is part of the ruling coalition.

A narrative is a set S ⊆ {0, 1, ..., n}, namely a subset of the components of x. The

set S defines the variables to which the outcome y is attributed. For example, S =

{0, 2} means that the postulated causes of y are the policy and group 2’s power status.

Given a probability distribution p over (x, y), a narrative S generates a belief over the

outcome conditional on its postulated causes. We denote this belief by (p(y | xS)),

where xS = (xi)i∈S.9 Thus, a narrative S draws attention to the correlation between y

and xS and gives this correlation a causal meaning.

We refer to S = {0} as the “true” narrative, because it attributes y to its sole true

cause a. Every narrative that fails to include 0 is false because it attributes y to wrong

causes. We refer to S = ∅ as a “denial” narrative because it does not attribute y to any

of the endogenous variables. Implicitly, the denial narrative attributes the outcome to

external factors. Finally, we refer to non-empty narratives S ⊆ N as “tribal” because

they attribute y to the power status of social groups, without mentioning policies.

We assume that there is some domain of feasible narratives, which includes the true

and denial narratives. We will later consider various domain restrictions.

Platforms and Mobilization

A platform is a policy-coalition-narrative triple (a, C, S) with the restriction (to be

explained below) that, if i ∈ C, then f(i, a) > 0. Let σ denote an objective long-run

probability distribution over prevailing platforms (we will clarify below what it means

9We use the abbreviated notation (p(y | xS)) for (p(y | xS))xS ,y.
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for a platform to prevail). The induced joint distribution over (a, C, S, y) is

pσ(a, C, S, y) = σ(a, C, S) · Pr(y | a),

where Pr(y | a) is given by (1). We denote the support of σ by Supp(σ).

When applied to the distribution pσ(a, C, S, y), a narrative S induces the following

conditional belief over y given x:

pσ(y | xS) =
∑
a

pσ(a | xS) Pr(y | a), (2)

where pσ(a | xS) is determined by σ.

We assume that the extent to which a platform mobilizes a group is proportional

to the promise of a good outcome it offers, where the proportionality constant is the

group’s mobilization propensity.

Definition 1 (Mobilization). Fix a distribution σ over platforms. The extent to which

platform (a, C, S) mobilizes group i is

mi,σ(a, C, S) = pσ(y = G | xS(a, C)) · f(i, a). (3)

The term pσ(y = G | xS(a, C)) represents a narrative-based probability of a good

outcome conditional on the platform—specifically those aspects of the platform that its

narrative highlights as relevant causes. It is the empirical frequency of a good outcome

(according to the long-run distribution pσ) conditional on xS = xS(a, C). We elaborate

on this term below.

Equilibrium

We are now ready to define equilibrium in our model, which pours content into the

notion of prevailing platforms.

Definition 2 (Equilibrium). A distribution σ over platforms with full support over

(a, C) is an ε-equilibrium if whenever σ(a, C, S) > ε, platform (a, C, S) maximizes the

total mobilization

Mσ(a, C, S) =
∑
i∈C

mi,σ(a, C, S). (4)

A distribution σ (not necessarily with full support) is an equilibrium if it is the limit of

ε-equilibria as ε→ 0.

10



We start from the notion of ε-equilibrium to ensure that pσ(y = G | xS) is well-defined.

This “trembling hand” aspect plays a very limited role in our analysis.

3.1 Discussion and Interpretation

Mobilization Propensity

The function f(i, a) represents in reduced form several aspects of group i: a value

judgment of policy a, the policy’s specific costs or benefits for the group (independently

of its implications for the public outcome), the group’s political participation costs and

its size. In particular, we can think of an individual social group i as consisting of a mass

of agents with distinct attitudes to policies, such that each agent supports exactly one

of them; f(i, a) is the mass of agents in group i who can be mobilized in support of a.

We view f(i, a) > 0 and f(i, a) = 0 as being qualitatively distinct. This is the reason

why our definition of platforms requires that f(i, a) > 0 if i ∈ C. Suppose group i is

intrinsically opposed to policy a. Then, it is natural to assume that this group will not

be part of a coalition that advocates a: Either the coalition’s gatekeepers will oust what

it perceives as a “fifth column”, or the group itself would not want to join the coalition

in the first place. By assumption, this group satisfies f(i, a′) > 0 for a′ 6= a, so it could

join coalitions that advocate a′. In this case, rallying in favor of a′ is akin to rallying

against a.

Group Mobilization

The function Mσ is a measure of the total support that platform (a, C, S) generates,

given distribution σ. Our notion of support takes a broad view of political mobilization

to include not only voting, but also other kinds of political participation: rallies, peti-

tions, or social media activism. Expression (4) means that the mobilization of a coali-

tion is proportional to its aggregate mobilization propensity given the platform’s pol-

icy, as well as to the belief—shaped by the platform’s narrative—that the outcome will

be good conditional on the event that the platform prevails. The stronger the belief,

the stronger the support for the platform.

We adopt the multiplicative form of (3) mainly for tractability. However, this form

can be “microfounded” in various ways. For example, we can assume that group mobi-

lization around a platform is proportional to the group’s subjective indirect utility from

the platform. Specifically, suppose that the policy a determines not only the probability

of a good outcome but also when the outcome is realized (think of the decision whether
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to make an investment that produces future rewards); group i’s utility is δi(a)·1[y = G],

where δi(a) is a discount factor associated with policy a. Then, the group’s subjective

indirect expected utility from the platform will be given by (3). According to this mi-

crofoundation, the appropriate criterion for welfare analysis is Pr(y = G).

We index Mσ by σ because the conditional belief pσ(y = G | xS) may vary with

the long-run distribution over prevailing platforms. To see why, recall that y is a fixed

(probabilistic) function of only a, so it is independent of C conditional on a. This

property can be represented by the directed acyclic graph (DAG) C ← a → y.10

However, if narrative S does not attribute y to a—i.e., 0 /∈ S—it amounts to interpreting

a long-run correlation between C and y as if it is causal, namely as if the DAG were

xS → y. In reality, this correlation is due to confounding because both y and C are

correlated with a. The latter correlation depends on σ as shown by (2).

We now illustrate how false narratives can induce wrong beliefs about the outcome.

Suppose n = 3 and σ is as follows:

σ a C S

α g {1} {0}
β b {2, 3} ∅
γ b {1, 3} {2}

Then, using (2), we obtain the subjective conditional probability of a good outcome

associated with each of the three platforms in Supp(σ):

pσ(y = G | x{0}(g, {1})) = pσ(y = G | a = g) = q

pσ(y = G | x∅(b, {2, 3})) = pσ(y = G) = q · α

and

pσ(y = G | x{2}(b, {1, 3})) = pσ(y = G | x2 = 0) =

pσ(y = G | 2 /∈ C) = q · α

α + γ

For a general distribution σ, the last term would be

10The link a→ y represents a true causal relation, whereas the direction of the link between C and
a is arbitrary.
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pσ(y = G | x2 = 0) =
q
∑

C,S|2/∈C σ(g, C, S)∑
a,C,S|2/∈C σ(a, C, S)

.

We can see that false narratives can generate positive mobilization for platforms that

involve policy b, even though it objectively leads to y = B with certainty. For additional

discussion of our modeling approach to political mobilization, see the concluding section.

Equilibrium Concept

Our definition of equilibrium captures the idea that a platform’s political power depends

on how strongly it mobilizes its coalition groups. We view narrative-fueled political

competition as a battle over public opinion. A platform prevails given σ if it generates

the largest total mobilization—if it didn’t, another platform would arise in the political

arena and replace it. When (a, C, S) prevails, C is a ruling coalition. The distribution σ

describes the long-run frequencies with which different platforms prevail. In Section 7,

we substantiate this dynamic interpretation of our equilibrium concept.

Note that if only the true narrative S = {0} existed, any platform with a = b would

generate Mσ = 0 by (1). Instead, a platform with a = g always generates Mσ > 0. In

this case, policy g would occur with probability one in equilibrium. We therefore refer

to g as the “rational” policy.

4 Two-Group Societies

We begin our analysis with the simple case of n = 2. To avoid trivial cases, we assume

that mobilization propensities satisfy f(1, g) > f(2, g) and f(1, b) < f(2, b). The fol-

lowing are some examples of policies and outcomes to have in mind. First, the issue is

climate change and policy g represents carbon taxation, which produces a common en-

vironmental benefit but induces differential costs among social groups (captured by f).

Second, the issue is economic growth, where g represents structural reforms that foster

growth but inflict differential adjustment costs across society. Third, the issue is infla-

tion, where g represents fiscal restraint. Finally, the issue is national security, where g

represents an aggressive military strategy that mitigates security threats, but involves

sacrifices and moral judgments that vary across groups.

In this section, we rule out the grand coalition: C can only be {1} or {2}. This

specification is akin to a two-party system, in which exactly one party can be in power

at any point in time. In this case, our equilibrium concept can be interpreted in terms
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of a two-party voting model: Supporters of each party vote non-strategically for it,

to the extent that the party’s policy-narrative combination mobilizes them to do so—

otherwise, they abstain (somewhat as in Levy et al. (2022)).

This setting allows us to reduce the set of relevant narratives. Since x1 = 1 if and

only if x2 = 0, all tribal narratives S ⊆ N are equivalent: When they accompany the

coalition {i}, they effectively say that “things are good when group i is in power / group

j is not in power”. In addition, all S that contain {0} are equivalent, because Pr(y = G |
a, C) = Pr(y = G | a) for all a, C. Every feasible narrative is then equivalent to one of

the following: the true narrative {0}, the denial narrative ∅, or the tribal narrative {1}.

Therefore, in this section, we assume that only these three narratives are feasible—and

we denote them by true, denial, and tribal for expositional clarity. This assumption is

without loss of generality as far as the equilibrium distribution over (a, C) is concerned.

This de-facto reduction to a two-party model with few relevant narratives is an ex-

positional device to present some of our main ideas in a simple form, while deferring

others to the next section.

Proposition 1. There is a unique equilibrium σ∗. The only platforms that can be in

Supp(σ∗) are (g, {1}, true), (b, {2}, denial), and (b, {1}, tribal). Furthermore,

(i) σ∗(g, {1}, true) = min {1, f(1, g)/f(2, b)};

(ii) σ∗(b, {1}, tribal) > 0 only if σ∗(b, {2}, denial) > 0.

The proofs of all the formal results are in the Appendix.

To interpret the equilibrium, assume f(2, b) > f(1, b) > f(1, g) > f(2, g), such that all

three platforms mentioned in Proposition 1 are in Supp(σ) (see the Appendix). When

true prevails, this means that group 1 is in power, implements policy g, and employs

the true narrative attributing outcomes to policies. When denial prevails, this means

that group 2 is in power, implements policy b, and employs the denial narrative that

implicitly attributes outcomes to external factors. Finally, when tribal prevails, this

means that group 1 is in power, implements b, and employs the tribal narrative.

The three narratives in the equilibrium support roughly correspond to those described

by Stone (1989), as quoted in the Introduction. In the context of the inflation story

mentioned in the Introduction and at the beginning of this section, we can think of

the true narrative as a claim that low inflation is brought about by fiscal restraint;

the denial narrative attributes inflation to external factors such as “corporate greed”
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or supply shocks; and the tribal narrative credits one party for low inflation (without

being specific about policies).

To gain intuition for Proposition 1, let us write the expressions for the total mobi-

lization generated by the three platforms:

Mσ(a, {i}, true) = pσ(y = G | a) · f(i, a) = q · 1[a = g] · f(i, a)

Mσ(a, {i}, denial) = pσ(y = G) · f(i, a) = q · pσ(a = g) · f(i, a)

Mσ(a, {i}, tribal) = pσ(y = G | xi = 1) · f(i, a)

In equilibrium, the rational policy g must occur with positive probability. The reason

is that any platform carried by a false narrative free-rides on episodes with a = g.

Also, note that a platform advocating g will generate its largest total mobilization if

it employs the true narrative, which highlights the correlation between a and y (this

correlation is stronger than the correlation between y and any other variable).

However, when f(2, b) > f(1, g), policy b is more strongly mobilizing than policy g.

In this case, false narratives allow b to gain dominance at the expense of g. They enable

supporters of b to “eat their cake and have it:” On the one hand, they are intrinsically

attracted to policy b; on the other hand, the narrative distracts them from the adverse

consequences of b. The equilibrium probability of a = g is determined by the ratio

f(1, g)/f(2, b). What makes policy b not only popular but also “populist” is that it

necessitates a false narrative to mobilize public opinion.

The distinction between the two false narratives—denial and tribal—is irrelevant for

the equilibrium probability of a = g. However, it matters for the identity of the group in

power. When f(1, b) > f(1, g), the tribal narrative enables group 1 to displace group 2,

even though it adopts the same “populist” policy b. The reason is that group 1 can

milk its reputation for achieving a good outcome—thanks to its historical tendency

to actually implement g. It does so by highlighting the historical correlation between

y = G and being in power (or, equivalently, group 2 being out of power).

A dynamic interpretation

For a deeper intuition behind the equilibrium, it is useful to have a dynamic process

in mind. At every time period, the mobilization value (or M -value) of platforms is

calculated according to the historical frequencies of prevailing platforms; the platform

with the highest M -value is the one that prevails at that period. Imagine that initially
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there are some random fluctuations over (a, C) and that only the true narrative is

considered. This narrative can only justify policy g because Pr(y = G | a) = q · 1[a =

g]. This policy mobilizes group 1 more strongly. Therefore, the prevailing platform

is (g, {1}, true).

Suppose this status quo persists for a while, and at some point platform (b, {2}, denial)
arises. By then, the historical frequency a = g is close to one. Therefore, the denial

narrative induces the belief Pr(y = G) ≈ q. Because f(2, b) > f(1, g), the new plat-

form is more strongly mobilizing than the “incumbent” platform (g, {1}, true). As a

result, the new platform displaces the old one and becomes dominant. Since the new

platform involves policy b, the historical frequency of policy g gradually declines, low-

ering Pr(y = G).

As this process continues, the denial platform’s mobilization will drop below q ·f(1, b).

At that same time, the platform (b, {1}, tribal) gains traction. In the path described

so far, a = g is strongly associated with x1 = 1. This implies the historical conditional

probability Pr(y = G | x1 = 1) ≈ q. Consequently, a narrative arguing that things are

good when group 1 is in power (or, equivalently, when group 2 is out of power) can mo-

bilize group 1 behind policy b. The total mobilization of (b, {1}, tribal) is approximately

q ·f(1, b). Since f(1, b) > f(1, g), this exceeds the total mobilization of the two previous

platforms, and (b, {1}, tribal) becomes dominant. As this phase continues, it gradually

weakens the correlation between x1 and y and therefore lowers the total mobilization

that the platform generates. By lowering the frequency of y = G, it also weakens the

appeal of the denial narrative. This brings the platform carried by the true narrative

back in vogue.

The subsequent dynamic repeats this cycle, albeit with smaller swings in total mobi-

lization because marginal and conditional frequencies are calculated over longer histo-

ries. In the long run, all three platforms generate the same total mobilization q ·f(1, g).

Any deviation that raises the long-run frequency of one platform will trigger an offset-

ting dynamic response. That is, the equilibrium of Proposition 1 is dynamically stable.

Section 7 formalizes this process in the context of the general multi-group case.

5 Fragmented Societies

This section considers societies with more than two social groups (n > 2). Relative

to Section 4, three key differences will emerge. First, “exclusionary” narratives of the
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form “things are good when these groups are out of power” are no longer equivalent

to “inclusionary” narratives of the form “things are good when these groups are in

power”. We will see that only the former arise in equilibrium. Second, the proliferation

of exclusionary narratives can depress the equilibrium probability of the good outcome.

Finally, new coalition structures can arise that would not be sustainable if only the true

narrative was feasible.

An example with a fragmented Left

Let n = 4 and the domain of feasible narratives be {{1}, {2}, {3}, {4}, {3, 4}}. The

“Right” is {1}, the “Center” is {2}, and the “Left” is {3, 4}; the Left can be further

sub-divided into {3} and {4} (e.g., moderates and progressives).11 Let f(3, a) ≡ f(4, a).

Assume that f(2, b) > f(1, g) + f(2, g), namely the Center’s mobilization propensity

given b is stronger than that given g among the Center-Right.

The following distribution is an equilibrium (indeed, the unique one in a sense we will

make precise below):

σ policy coalition narrative
f(1,g)+f(2,g)

f(2,b)+f(3,b)+f(4,b)
g {1, 2} true

f(2,b)−f(1,g)−f(2,g)
f(2,b)+f(3,b)+f(4,b)

b {2} {3, 4}
f(3,b)+f(4,b)

2[f(2,b)+f(3,b)+f(4,b)]
b {2, 3} {4}

ditto b {2, 4} {3}

As in two-group societies, policy b occurs with positive probability sustained by false

narratives. Here, however, all false narratives are non-empty exclusionary tribal ones.

For example, in platform (b, {2}, {3, 4}), the Center attributes a good outcome to keep-

ing the Left out of power. Furthermore, the equilibrium exhibits endogenous fragmen-

tation: Each faction of the Left sometimes joins the Center to form a coalition, using

a false narrative that attributes the good outcome to keeping the remaining left-wing

group out of power. Finally, the equilibrium probability of policy g is equal to the ra-

tio of the total mobilization propensity for g and for b, as in two-group societies. The

next section shows that this is not a general feature. �

11Obviously, these labels are arbitrary; the appropriateness of the labeling will depend on the context.
For example, when the issue is homeland security, the Right may be viewed as more supportive of
aggressive counter-terrorism policies. Conversely, when the issue is climate change, the Left may be
viewed as more supportive of emission regulation.
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To proceed with the general analysis, let Na = {i ∈ N | f(i, a) > 0} denote the set

of social groups that do not oppose policy a. For convenience, we will refer to N \N b

as the “Right”, N \N g as the “Left,” and N g ∩N b as the “Center”. For every feasible

narrative S, let L(S) be the components of S that belong to the Left:

L(S) ≡ S ∩ (N \N g)

For every J ⊆ N , let F (J, a) be the aggregate mobilization propensity given a of the

groups in J :

F (J, a) ≡
∑
i∈J

f(i, a).

When F (N, g) > F (N, b) (i.e., when the population finds g more appealing than b), it

follows immediately from (3)-(4) that Mσ(g,N g, {0}) > Mσ(b, C, S) for every C, S. In

this case, Pr(a = g) = 1 in any equilibrium. Moreover, Mσ(g,N g, {0}) ≥ Mσ(g, C, S)

for every C, S, and thus there is an equilibrium σ in which σ(g,N g, {0}) = 1.

The next result provides a general equilibrium characterization for the more interest-

ing case in which F (N, g) ≤ F (N, b). The proof develops an algorithm to compute the

unique equilibrium distribution over (a, C).

Theorem 1. Let F (N, g) ≤ F (N, b). An equilibrium σ∗ exists. Furthermore, any

equilibrium induces the same unique distribution over policy-coalition pairs (a, C) and

has the following additional properties:

(i) The policy g is played with positive probability which is at most F (N, g)/F (N, b).

(ii) If (g, C, S) ∈ Supp(σ∗), then C = N g and 0 ∈ S.

(iii) Every platform (b, C, S) ∈ Supp(σ∗) satisfies S ⊆ N b and C = N b \ L(S).

The first part of this result establishes an upper bound on Pr(a = g), which is implied

by the denial narrative. To see why, note that the total mobilization generated by

(g,N g, {0}) is q · F (N, g), which in equilibrium has to be weakly larger than the total

mobilization generated by (b,N b,∅), namely q · pσ∗(a = g) · F (N, b).

Thorem 1 only partially pins down equilibrium narratives. The reason is that multiple

narratives can induce the same promise of a good outcome, and therefore the same total

mobilization. In particular, if 0 ∈ S, then pσ(y | xS(a, C)) = pσ(y | a) because y is

independent of C conditional on a (as we saw in Section 3.1).
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Therefore, it is convenient to focus on equilibria in which narratives do not have any

redundant component.

Definition 3 (Essential equilibria). An equilibrium σ is essential if whenever (a, C, S) ∈
Supp(σ), then: (i) if pσ(y | a) = pσ(y | xS(a, C)) for all a, C, then S = {0}; and (ii)

there is no T ⊂ S such that pσ(y | xT (a, C)) = pσ(y | xS(a, C)) for all a, C.

This refinement applies two “tie-breaking rules” that favor the true narrative over

false ones, and small narratives over large ones. This enables us to obtain a sharper

characterization of equilibrium narratives, under a mild restriction of the domain of

feasible narratives.

Corollary 1. Suppose that if S is a feasible narrative, then S\(N g∩N b) is also feasible.

Then, there exists a unique essential equilibrium σ∗. Furthermore, (i) if (g, C, S) ∈
Supp(σ∗), then S = {0} and C = N g; and (ii) if (b, C, S) ∈ Supp(σ∗), then S ⊆ N \N g

and C = N g \ S.

Thus, in the unique essential equilibrium, the rational policy g is accompanied by the

true narrative, whereas the false narratives that accompany policy b take the exclusion-

ary tribal form. They identify a collection S of groups that oppose g, but are not in

the coalition supporting b. By attributing the outcome to the power status of S, the

narrative essentially argues that “things are good when S is out of power”. The denial

narrative is a special case in which S = ∅.

Corollary 1 shows that exclusionary and inclusionary tribal narratives are no longer

equivalent when n > 2. What makes exclusionary narratives more effective? When a

group opposes g, there is positive correlation between that group being out of power

and the good outcome. The exclusionary narrative exploits this correlation to generate

a false belief that the very exclusion of specific groups from power will lead to a good

outcome, while advocating policy b. This enables groups to “have their cake and eat it :”

They reap the mobilization benefits of the intrinsically more attractive b, while deflecting

responsibility for a bad outcome and “scapegoating” the excluded groups for it.

By contrast, platforms advocating b refrain from using “inclusionary” narratives that

attribute the outcome to the power status of coalition members. To gain intuition, recall

that to be successful, a platform advocating b should maximize the promise of a good

outcome. Therefore, the groups in its coalition must always be in power when policy g
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is advocated in equilibrium. This implies that such groups can never be scapegoated in

equilibrium, as doing so would imply a bad outcome and hence no mobilization. But

then it is possible to include them in any platform that advocates b, thereby increasing

its mobilization. It follows that those groups are always in power, which means that

their power status cannot be correlated with the outcome, let alone be a sound causal

explanation of it.

Both inclusionary and exclusionary tribal narratives S are “simple” in the sense that

they point to social groups with identical power status — i.e., either all of them are in the

coalition C or none of them is. In principle, one could have tribal narratives S that are

“hybrid” with respect to C — e.g. S = {1, 2}, 1 ∈ C and 2 /∈ C. The characterization

in Theorem 1 allows for such narratives, whereas Corollary 1 rules them out—although

with no substantive consequence as clarified by the definition of essential equilibrium.

Exclusionary tribal narratives trade off breadth and intensity of induced support. Ex-

cluding groups from a coalition is costly because it forgoes their mobilization propen-

sity. However, if this exclusion is not too frequent, its correlation with a = g (and hence

y = G) remains strong, thus generating intense support from the coalition members.

At one extreme, the denial narrative garners the largest coalition by not excluding any

group, but induces a weaker belief of y = G by not exploiting any correlation in the data.

Tribal narratives give rise to coalitions that would be impossible otherwise. If the

true and denial narratives were the only feasible ones, the equilibrium support would

not feature coalitions other than N g and N b. Thanks to tribal narratives, strict subsets

of N b appear as equilibrium coalitions.

The following result characterizes when non-empty exclusionary narratives are part

of the unique essential equilibrium.

Proposition 2. There exists (b, C, S) with non-empty S ⊂ N in the support of the

essential equilibrium if and only if 0 < F (T ) < F (N, b) − F (N, g) for some feasible

narrative T ⊆ N \N g.

The condition is that the domain of feasible narratives induces a set whose aggregate

mobilization propensity is sufficiently weak—and so it is not too politically costly to

exclude. When the condition is violated, the only false narrative that can be part of

essential equilibrium is the denial narrative.
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6 Specific Domains of Feasible Narratives

Section 5 allowed for any domain of feasible narratives that includes the true and denial

narratives. In this section, we consider various restricted domains. We use S to denote

the domain of feasible tribal narratives (that is, S ⊆ N for every S ∈ S). There are sev-

eral reasons for considering such restricted domains. First, we interpret each S ∈ S as

a collection of social groups that can be clearly identified by a common label or defining

attribute (“fundamentalists”, “progressive left”, “unionized workers” or “the economic

elite”). Second, S reflects the extent to which different groups are represented in gov-

ernment, which can render them accountable for outcomes. In some political systems

(e.g., Israel), there are political parties that directly represent specific ethno-religious

groups. Consequently, there is data about their power status and how it is correlated

with outcomes, which makes a narrative that exploits this correlation quantifiable. In

other systems (e.g., the US), the mapping between specific social groups and political

representation is more blurred, thus restricting the supply of similar narratives.

This section is structured as follows. In Section 6.1, we consider a particular restricted

domain and show that it leads to a simple characterization of Pr(a = g) and equilibrium

narratives. Section 6.2 characterizes the narrative domains for which Pr(a = g) hits the

upper bound provided by Theorem 1. Section 6.3 applies this characterization to other

specific domains.

Throughout the section, we assume that policy b is intrinsically more appealing than

policy g, even among the groups that intrinsically support g. That is, mobilization

propensity satisfies

F (N g, b) > F (N g, g). (5)

This condition fits situations in which g is a more costly policy (carbon tax, fiscal

restraint) and therefore, ceteris paribus, it is intrinsically less popular than b. For

expositional convenience, this section focuses on essential equilibria (as defined and

characterized in Section 5).

6.1 A Multi-Attribute Model

Suppose that each social group is characterized by multiple attributes that represent

ideological, ethno-religious, or socioeconomic identities. That is, let N = {0, 1}K , where
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K > 1.12 Use ik ∈ {0, 1} to denote the value of group i’s k-th attribute, and denote

iB = (ik)k∈B.

Let m ∈ {0, ..., K − 1} and assume that N \ N g = {i ∈ N | ik = 1 for all k > m}.
That is, specific values of the attributes m+ 1, ..., K identify the Left category. The set

of groups on the Left are effectively defined by {0, 1}1,...,K , such that m indicates the

degree of internal fragmentation among the Left.

Suppose S contains all sets S ⊂ N that take the form S = {i ∈ N | iB = v} for

some B ⊆ {1, ..., K} and v ∈ {0, 1}B. That is, a feasible tribal narrative focuses on

some subset of attributes B and fixes their values; the narrative is defined as the set

of groups that share these values. For example, S = {i ∈ N | i1 = 1, i2 = 0} is

a feasible narrative. For example, in the context of Israeli politics, it can represent a

narrative that attributes outcomes to the power status of religious Jews. In contrast,

S = {i ∈ N | i1 = i2} is not a feasible narrative in this multi-attribute model.

Proposition 3. In the unique essential equilibrium σ∗ of the multi-attribute model,

pσ∗(a = g) =
F (N, g)

F (N g, b) + max{m, 1} · F (N \N g, b)
(6)

Furthermore, the narratives that accompany a = b in the support of σ∗ are S = N \N g

and all sets of the form

S = (N \N g) ∩ {i ∈ N | ik = v} (7)

for some k ∈ {1, ...,m} and v ∈ {0, 1}.13

This result has two noteworthy features. First, the exclusionary tribal narratives that

sustain policy b in equilibrium take a simple form. One such narrative is S = N \N g.

The coalition that accompanies this combination of a and S is the Center C = N g∩N b—

i.e., in this platform the Center scapegoats the entire Left. The other narratives that

accompany policy b scapegoat all Left groups having a particular value v ∈ {0, 1}
in one of the attributes k ∈ {1, ...,m} that distinguish among them. For example,

suppose attribute k ≤ m indicates a social group’s education status. Then, one of the

12The restriction to binary attributes is for expositional simplicity; the analysis easily extends to an
arbitrary finite alphabet.

13We will prove this result by applying the general characterization theorem presented in the next
sub-section.
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equilibrium narratives that accompany policy b can be phrased as “the outcome is good

when the highly educated Left is out of power”.

Second, expression (6) gives an explicit formula for the equilibrium probability of

policy g. This probability decreases with m (strictly so when m > 1). Thus, political

fragmentation on the Left creates more room for false tribal narratives that crowd out

the true narrative and the rational policy g.

The formula suggests an additional comparative-statics exercise. Consider changes in

mobilization propensities that reflect more polarized attitudes toward policy b. Specif-

ically, suppose F ′(N g, b) = F (N g, b) − ε and F ′(N \ N g, b) = F (N \ N g, b) + ε, where

ε > 0 is small enough that condition (5) continues to hold. This change from F to F ′

captures a shift of intrinsic support for b from the center to the left, resulting in a more

polarized society. When m > 1, this shift lowers pσ∗(a = g). In this sense, higher po-

larization is detrimental to the rational policy.

6.2 When do Tribal Narratives Crowd out Rational Policies?

We now characterize the tribal-narrative domains S for which the equilibrium proba-

bility of policy g achieves the upper bound F (N, g)/F (N, b). Recall that this bound

is attained when denial is the only feasible false narrative. Therefore, when the equi-

librium probability of a = g hits the upper bound, it means that tribal narratives are

policy-irrelevant.

We say that S ⊂ N \N g is a coarse subcategory of the Left if there is no S ′ such that

S ⊂ S ′ ⊂ N \N g (it is understood that both S and S ′ are in S). We also introduce the

following properties of S:

(i) S ∪ Ŝ = N \N g for all coarse subcategories S and Ŝ of the Left.

(ii) For every S ∈ S, S ⊂ N \N g, that is not a coarse subcategory of the Left,

S =
⋂
S⊂S′

S ′.

Property (i) says that coarse subcategories are sufficiently broad so that every pair

of them covers the Left. Property (ii) says that every finer category is equal to the

intersection of its coarser categories.
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Theorem 2. Fix F (N g, b) and F (N, g) (and recall that F (N g, b) > F (N, g)). Then in

any equilibrium σ∗, pσ∗(a = g) = F (N, g)/F (N, b) for all values of F (N \N g, b) if and

only if S satisfies properties (i) and (ii).

This result says that exclusionary tribal narratives cannot crowd out the rational

policy—no matter how strongly the Left supports b—if and only if properties (i) and

(ii) hold. To illustrate the result, reconsider the multi-attribute model. Coarse sub-

categories in this model are obtained by fixing the value of one attribute k ≤ m. For

example, suppose S and S ′ correspond to fixing im = 1 and im−1 = 1. Then, S ∪ S ′ =

{i ∈ N |im = 1 or im−1 = 1}, which is a strict subset of N \N g. It follows that property

(i) fails, which is why pσ∗(a = g) < F (N, g)/F (N, b).

It is easy to verify that the multi-attribute model does satisfy property (ii). Lemma 1

in the proof of Theorem 2 establishes that property (ii) is necessary and sufficient for the

feature that coarse subcategories of the Left are the smallest tribal narratives that are

employed in every essential equilibrium. This is indeed the case in the equilibrium given

by Proposition 3. The next sub-section further illustrates the role that properties (i)

and (ii) play in the characterization of essential equilibrium.

6.3 Additional Examples of Narrative Domains

A hierarchical multi-attribute model

The multi-attribute model assumes that a feasible narrative is defined by setting the

values of some collection of attributes B. However, in some applications we may wish to

impose additional structure. For example, the attributes may be hierarchically ordered,

such that the distinction between values of attribute k is nonsensical unless the value

of attribute k + 1 has been pinned down. For example, attribute k + 1 may indicate

social groups’ broad religious identity (e.g., Jewish), while attribute k indicates their

finer religious affiliation (e.g., Orthodox). Therefore, a narrative that specifies the value

of attribute k must also specify the value of attribute k + 1.

To capture this idea, let D ∈ {1, ...,m} be a constant, and define S as the collection

of all S ⊂ N that take the form S = {i ∈ N | i{k,...,K} = v} for some k ∈ {m − D +

1, ..., K} and v ∈ {0, 1}{k,...,K}. This specification represents a “social taxonomy”: the

narrative defined by vk, ..., vK is a direct subcategory of the coarser category defined by

vk+1, ..., vK . The parameter D represents the depth of the social taxonomy.
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Proposition 4. In the hierarchical multi-attribute model, the unique essential equilib-

rium σ∗ satisfies

pσ∗(a = g) =
F (N, g)

F (N g, b) +D · F (N \N g, b)
. (8)

This formula is similar to (6), except that D replaces m. Note that pσ∗(a = g) <

F (N, g)/F (N, b) if and only if D > 1. In fact, the hierarchical multi-attribute model

violates property (ii)—unless D = 1—because the intersection of narratives coarser

than S is the smallest S ′ that strictly contains S. However, property (i) holds because

coarse subcategories of the Left partition N \N g into two subsets pinned down by the

value of attribute m− 1.

The structure of equilibrium narratives is qualitatively different between the hierarchi-

cal and the non-hierarchical (original) multi-attribute model. In the latter, only a frac-

tion of the feasible tribal narratives are employed in equilibrium. By contrast, in the hi-

erarchical model, every feasible narrative S ⊆ N \N g is realized with positive probabil-

ity in the essential equilibrium. To see why, suppose an exclusionary tribal narrative in-

vokes some category S ′ in the social taxonomy, and yet one of its direct sub-categories S

is never invoked. The hierarchical structure of S implies that the equilibrium narratives

that weakly contain S ′ and S are the same. This means that narratives S and S ′ gener-

ate the same beliefs. However, the smaller S is coupled with a larger coalition and there-

fore generates higher total mobilization than does S ′, so we cannot be in an equilibrium.

A rich domain of tribal narratives

Finally, consider the extreme case in which S is the set of all subsets S ⊆ N . We

refer to such S as the “rich” narrative domain. The multi-attribute structure of N is

redundant in this case, so we ignore it here.

Proposition 5. In the unique essential equilibrium σ∗ under a rich narrative domain,

pσ∗(a = g) =
F (N, g)

F (N, b)
.

Furthermore, the narratives that accompany policy b in the support of the equilibrium

are S = N \N g and all sets of the form

S = N \ (N g ∪ {i})
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for some i ∈ N \N g.

The proof of this result is a simple application of Theorem 2. The rich domain

satisfies both properties (i) and (ii). Property (i) holds because coarse subcategories of

the Left correspond to N \ (N g ∪ {i}) for any i ∈ N \N g. Property (ii) holds because

any intersection of subsets of N \ N g is by definition in S. Therefore, the equilibrium

probability of a = g attains the upper bound in Theorem 1. Turning to the structure

of equilibrium false narratives, N \ N g and its coarse subcategories are employed as

exclusionary tribal narratives; the proof is exactly as in the case of Proposition 3. Since

the rich domain satisfies property (ii), Lemma 1 implies that these are the only false

narratives that are employed in equilibrium. Thus, the narratives that accompany

policy b take the following form: Either the entire Left N \ N g is scapegoated, or the

Left minus exactly one group is scapegoated (this group joins the Center to form a

Center-Left ruling coalition).

Proposition 5 demonstrates that the effect of political fragmentation on pσ∗(a = g)

is non-monotonic. The rich domain represents a larger scope for tribal narratives than

the multi-attribute domain. Nevertheless, pσ∗(a = g) is higher whenever m > 1. The

reason is that apart from narrative N \N g, which belongs to both domains, the largest

narratives in the rich domain are larger than the largest narratives in the multi-attribute

domain. This means that the coalitions that employ false narratives tend to be smaller

in the rich domain case, which is compensated for by a more optimistic belief, namely

a larger pσ∗(a = g).

To summarize our findings for the three domain restrictions we considered, the rich

domain and multi-attribute domain are similar in the equilibrium structure of false

narratives, but differ in terms of the equilibrium probability of policy g. By contrast, the

social-taxonomy and multi-attribute domains are similar in the equilibrium probability

of g (in terms of the mobilization propensity function and the measure of political

fragmentation), but differ in the structure of equilibrium narratives.

7 A Dynamic Foundation

In this section, we consider a simple and natural dynamic process that determines

which platforms garner maximal popular support over time. We show that the process

converges to the unique equilibrium distribution over policies and coalitions in our main
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result (Theorem 1). This global convergence result provides a dynamic foundation for

our equilibrium concept.

Time is discrete and denoted by t = 1, 2, . . .. In each period t, there is a distribution

σt over platforms (a, C, S), where a ∈ {b, g}, C ⊆ N , and S ∈ S. Let the initial σ1 be

any distribution with full support over the set of platforms using admissible coalitions.

Since the set of platforms is finite, this distribution is well-defined. The distribution σt

evolves according to the following adjustment. For every t ≥ 2, let

(a, C, S)t ∈ arg max
(a′,C′,S′)

Mσt(a
′, C ′, S ′),

where ties can be broken arbitrarily. Then, let

σt+1(a, C, S) =


1
t+1

+ t
t+1
σt(a, C, S) if (a, C, S) = (a, C, S)t

t
t+1
σt(a, C, S) otherwise.

Thus, for t large enough, we can essentially view σt(a, S, C) as the empirical frequency

with which platform (a, C, S) has been dominant in the available history of data.

Proposition 6. Every limit point σ of the process σt induces the same distribution over

policy-coalition pairs (a, C) as that induced by the unique essential equilibrium σ∗.

This result formalizes and generalizes the dynamic convergence process we discussed in

the context of the two-group specification in Section 4.

8 Concluding Remarks

This paper has explored the role of false narratives in the mobilization of public opinion

in heterogeneous societies. Our main insight is that false narratives enable social groups

to dissociate the link between the intrinsic private appeal of certain policies and their

unattractive public outcome. They achieve this by attributing outcomes to spurious

causes, exploiting historical correlations, and misrepresenting them as causal. This takes

the form of exclusionary tribal narratives, which argue that keeping certain social groups

out of power leads to good outcomes. Such narratives are reminiscent of “scapegoating,”

a type of narrative that is often used in the political arena.
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Absolute vs. relative mobilization

Our model of political mobilization takes an “absolute” approach: The extent to which a

platform mobilizes social groups only depends on the platform’s features. An alternative

approach would define mobilization in relation to some reference point. According to

this view, what motivates agents is not the perceived absolute probability of a good

outcome, but rather the improvement of this probability relative to the reference point.

To some extent, our formalization already captures this idea. For example, consider a

tribal narrative arguing that the outcome will be good if group i is out of power. This

narrative only works when the probability of a good outcome conditional on i being

in power is zero. Therefore, the narrative could equivalently argue in relative terms,

namely that excluding i from the governing coalition is better than including it.

The reason we opted for an absolute formulation is twofold. First, we believe that in

many cases, “promise of a good outcome” is a major driver of narratives’ popularity.

Second, in a static, multi-party model, it is hard to define an unambiguous reference

point for the relative formulation (in the two-group case, we could equivalently define

our model in relative terms).

Retrospective voting

Our model suggests a novel, critical perspective into the idea of retrospective voting (see

Healy and Malhotra (2013) for a review article, and Plescia and Kritzinger (2017) for an

example that extends the concept to multi-party systems). This is the notion that voters

punish or reward parties according to their performance (measured by certain outcomes)

when they were in office. This view puts less emphasis on the policies that ruling parties

take and more emphasis on outcomes. The conventional view is that retrospective

voting is a “healthy” feature of democratic politics because it improves government

accountability and helps select competent candidates. Our view is that attributing

public outcomes to who is (or is not) in power rather than to the implemented policies

can be a false narrative that is detrimental to public outcomes.
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Appendix: Proofs

Proof of Proposition 1

We begin by recalling the total mobilization of platforms carried by the three relevant

narratives:

Mσ(a, {i}, true) = q · 1[a = g] · f(i, a)

Mσ(a, {i}, denial) = q · pσ(a = g) · f(i, a)

Mσ(a, {i}, tribal) = pσ(y = G | xi = 1) · f(i, a)

The proof proceeds in steps. As a preliminary observation, we note that there must exist

(a, C, S) ∈ Supp(σ) such that a = g. A formal argument for this appears in the proof

of our main result (Theorem 1) below. Intuitively, the trembles of ε-equilibria ensure

that the total mobilization generated by the platform (g, {1}, {0}) is q · f(1, g) > 0.

Therefore, the equilibrium platforms have to generate positive mobilization, which is

impossible if policy g is never taken and, hence, the outcome is never G.

Step 1 (platform carried by true narrative). (i) If σ(a, {i}, true) > 0, then a = g and

i = 1. (ii) If σ(g, {i}, S) > 0, then S = true.

Proof. Consider an ε-equilibrium σ. Note that pσ(y = G | a = b) = 0 and pσ(y = G |
a = g) = q. It follows that if σ(a, {i}, true) > ε and hence (a, {i}, true) maximizes

Mσ, then a = g and i = 1 because f(1, g) > f(2, g). Now suppose σ(g, {i}, S) > ε.

Since σ has full-support, pσ(y = G | xS′) < q whenever 0 /∈ S ′. This means that

Mσ(g, {i}, true) > Mσ(g, {i}, S ′) for every such S ′; hence, S = true. We have thus

established that claims (i) and (ii) hold for any ε-equilibrium and, hence, in any limit

of ε-equilibria.

Step 1 implies that (g, {1}, {0}) ∈ Supp(σ), and that if (a, {i}, denial) or (a, {i}, tribal)
are in Supp(σ), then a = b.

Step 2 (plaforms carried by denial and tribal narratives). (i) If σ(b, {i}, denial) > 0,

then i = 2. (ii) If σ(b, {i}, tribal) > 0, then i = 1.

Proof. Claim (i) follows immediately from f(2, b) > f(1, b). As to claim (ii), Step 1(i)

and Pr(y = 1|a = b) = 0 imply that pσ(y = G | xi = 1) > 0 only if i = 1. Therefore, if

(b, {i}, tribal) is in Supp(σ), then i = 1.
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The previous steps pin down the three platforms that can be in Supp(σ) for any

equilibrium σ, namely (g, {1}, true), (b, {2}, denial), and (b, {1}, tribal). Since they all

have distinct narratives, it will be convenient hereafter to denote each platform by its

narrative. The total mobilization they generate is

Mσ(true) = q · f(1, g) (9)

Mσ(denial) = q · σ(true) · f(2, b)

Mσ(tribal) = q · σ(true)

σ(true) + σ(tribal)
· f(1, b).

Step 3 (hierarchy of narratives). In equilibrium, σ(tribal) > 0 only if σ(denial) > 0.

Proof. Suppose σ(tribal) > 0 = σ(denial). Then,

σ(true) + σ(tribal) = 1,

so that

Mσ(tribal) = q · σ(true) · f(1, b).

But f(2, b) > f(1, b) then implies that Mσ(tribal) < Mσ(denial), which contradicts

σ(tribal) > 0.

Steps 1-3 enable us to establish equilibrium existence and uniqueness. Since σ(true) >

0, every platform in the support of σ generates a total mobilization of q · f(1, g). This

requirement reduces the task of deriving σ to solving systems of linear equations under

various configurations of f , which determine whether Supp(σ) is {true, denial, tribal},
{true, denial}, or {true}.

Case I: f(2, b) > f(1, b) > f(1, g) > f(2, g). In this case, Mσ(true) < Mσ(denial) if

σ(true) = 1. Therefore, σ(true) < 1. It follows from Step 3 that σ(denial) > 0. More-

over, σ(tribal) > 0 because otherwise Mσ(tribal) > Mσ(true). Therefore, σ must satisfy

Mσ(denial) = Mσ(true) = Mσ(tribal),

which has the unique solution

σ(true) =
f(1, g)

f(2, b)
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σ(denial) =
f(2, b)− f(1, b)

f(2, b)

σ(tribal) =
f(1, b)− f(1, g)

f(2, b)
.

Case II: f(1, g) ≥ f(2, b). In this case, Mσ(true) > Mσ(denial) whenever σ(true) < 1.

It follows that Supp(σ) = {true}. Indeed, when σ(true) = 1,

Mσ(true) ≥Mσ(denial),Mσ(tribal)

Thus, σ(true) = 1 is the unique equilibrium.

Case III: f(2, b) > f(1, g) ≥ f(1, b). In this case, Mσ(true) < Mσ(denial) if σ(true) = 1.

Therefore, σ(true) < 1. It follows from Step 3 that σ(denial) > 0. Since f(1, g) ≥
f(1, b), then Mσ(tribal) < Mσ(true) whenever σ(tribal) > 0. Therefore,

σ(true) =
f(1, g)

f(2, b)
σ(denial) =

f(2, b)− f(1, g)

f(2, b)

is the unique solution of

Mσ(denial) = Mσ(true) ≥Mσ(tribal).

This completes the proof.

Proof of Theorem 1

We organize the proof in steps. We will posit the existence of an equilibrium, charac-

terize its properties, and then confirm that we indeed have an equilibrium. Hereafter,

let σ be any candidate equilibrium. Note that by definition, F (N, a) = F (Na, a). We

use the two notations interchangeably. For convenience, let

d = F (N, b)− F (N, g) (10)

Step 1. There exists (a, C, S) ∈ Supp(σ) such that a = g.

Proof. Assume the contrary—i.e., a = b for every (a, C, S) ∈ Supp(σ). Then pσ(y =
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G) = 0. Therefore,

Mσ(a, C, S) = pσ(y = G | xS(a, C)) = 0

for every (a, C, S) ∈ Supp(σ). By the definition of equilibrium, σ is the limit of a

sequence of ε-equilibria for some ε → 0. Since σ(a, C, S) > 0, σε(a, C, S) is bounded

away from zero, and therefore Mσε(a, C, S) ≈ pσε(y = G | xS(a, C)) ≈ 0, for some

point along the sequence ε → 0. By contrast, Mσε(g,N
g, {0}) = q · F (N, g), which

is bounded away from zero and therefore higher than Mσε(a, C, S). This contradicts

(g,N g, {0}) /∈ Supp(σ).

Step 2. If (g, C, S) ∈ Supp(σ), then C = N g and S = {0}.

Proof. Since F (N g, g) > F (C ′, g) for every C ′ ⊂ N g, it follows that C = N g for every

(g, C, S) ∈ Supp(σ). Moreover, note that

pσ(y = G | xS(g, C)) = q · pσ(x0 = g | xS(g, C)) ≤ q = pσ(y = G | x0 = g).

In particular, the inequality is strict if σ has full support, which is the case in ε-

equilibrium. Therefore, for every ε-equilibrium σε(g,N
g, S) ≤ ε for all S 6= {0}. We

conclude that (g,N g, S) ∈ Supp(σ) implies S = {0}.

The last step establishes part (ii) in the statement of the theorem. Steps 1-2 are the

only place in the proof where we use the trembles of ε-equilibria. From now on, we

focus on the ε→ 0 limit itself.

Corollary 2. Total equilibrium mobilization is equal to

M∗ ≡ q · F (N g, g). (11)

This follows immediately from Steps 1 and 2. Note that M∗ is independent of σ.

Denote

α = σ(g,N g, {0}) (12)

Step 3. If xS(b, C) = xS(g,N g), then

pσ(y = G | xS(b, C)) =
qα

α +
∑

C′,S′|xS(b,C′)=xS(b,C) σ(b, C ′, S ′)
(13)
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Otherwise, pσ(y = G | xS(b, C)) = 0.

Proof. Suppose 0 /∈ S. By definition,

pσ(y = G | xS(b, C)) =
q ·
∑

C′,S′|xS(g,C′)=xS(b,C) σ(g, C ′, S ′)∑
a′,C′,S′|xS(a′,C′)=xS(b,C) σ(a′, C ′, S ′)

By Step 2, the numerator can be rewritten as

q · α · 1[xS(b, C) = xS(g,N g)]

which delivers (13). (Note that when 0 /∈ S, xS(b, C) = xS(g, C ′) if and only if S ∩C =

S ∩ C ′.) Now suppose 0 ∈ S. Then,

pσ(y = G | xS(b, C)) = pσ(y = G | x0 = b) = 0 (14)

Corollary 3. For every (b, C, S) ∈ Supp(σ), 0 /∈ S.

Proof. Suppose 0 ∈ S. By (14), Mσ(b, C, S) = 0 < M∗, hence (b, C, S) /∈ Supp(σ).

Step 4. If F (N, b) ≤ F (N, g), then α = 1. If F (N, b) > F (N, g), then

α ≤ F (N, g)

F (N, b)

Proof. Suppose F (N, b) ≤ F (N, g), but α < 1. Then there exists (b, C, S) ∈ Supp(σ),

such that the denominator of (13) is greater than α and hence pσ(y = G | xS(b, C)) < q.

It follows that

Mσ(b, C, S) = pσ(y = G | xS(b, C)) · F (C, b) < q · F (N, b) ≤ q · F (N, g) = M∗

which is a contradiction. Thus, in this case α = 1. Suppose F (N, b) > F (N, g). If

α = 1, then

Mσ(b,N b,∅) = pσ(y = G)F (N, b) = qF (N, b) > M∗

which is a contradiction. Thus, in this case α < 1. Recall that the denial narrative

S = ∅ is feasible. Furthermore, we must have Mσ(b,N b,∅) ≤ M∗ in any equilibrium.
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Since pσ(y = G) = qα, it follows that qα ·F (N, b) ≤ q ·F (N, g). This implies the upper

bound on α when α < 1.

Steps 1 and 4 establish part (i) in the statement of the theorem. The next step proves

part (iii).

Step 5. If (b, C, S) ∈ Supp(σ), then L(S) ⊆ N \N g and C = N b \ L(S).

Proof. We first show that N g∩N b ⊆ C for every (a, C, S) ∈ Supp(σ), and then use this

observation to establish the claim. Assume there is a platform (a, C, S) ∈ Supp(σ) such

that j /∈ C for some j ∈ (N g ∩N b). By Step 2, a = b. There are two cases to consider:

Case 1 : j /∈ S. Then pσ(y = G | xS(b, C ∪ {j})) = pσ(y = G | xS(b, C))). But since

F (C∪{j}, b) > F (C, b), it follows that Mσ(b, C∪{j}, S) > Mσ(b, C, S), a contradiction.

Case 2 : j ∈ S. Since xj(a, C) = 0 and every platform with a = g includes j in its

coalition, we have that pσ(y = G | xS(a, C)) = 0. But then (b, C, S) /∈ Supp(σ), a

contradiction. We have thus shown that the Center is always in every ruling coalition.

Consider some platform (b, C, S) ∈ Supp(σ). By assumption, no j ∈ N \ N b is in C.

From the argument above, (N g ∩ N b) ⊆ C. In addition, 0 /∈ S and S ∩ (N \N b) = ∅
as otherwise, pσ(y = G | xS(b, C)) = 0. It follows that S \ (N g ∩ N b) ⊆ N \ N g (this

includes the case where S \ (N g ∩N b) = ∅). It remains to show that C = N b \ L(S).

First, suppose there is j ∈ L(S) such that j ∈ C. Then xj(b, C) = 1 and hence, pσ(y =

G | xS(b, C)) = 0 (since j is not in any coalition that is part of a platform with a = g),

a contradiction. Second, suppose there is j ∈ N \N g such that j /∈ S and j /∈ C. Then

since pσ(y = G | xS(b, C ∪ {j})) = pσ(y = G | xS(b, C)) and F (C ∪ {j}, b) > F (C, b), it

follows that Mσ(b, C ∪ {j}, S) > Mσ(b, C, S), a contradiction.

The rest of the proof establishes uniqueness of the equilibrium distribution over (a, C),

and provides an algorithm for computing it (which will be put to use in subsequent

results).

The last step implies that the equilibrium probability of a pair (b, C) is entirely pinned

down by C. In particular, any platform (b, C, S) ∈ Supp(σ) satisfies C = N b \ L(S).

We use this observation to introduce the following notation, which we will use for the

remainder of the proof. Let S denote the domain of feasible tribal narratives, and let
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T ≡ {L(S) | S ∈ S}. For every T ∈ T , define

σ̄(T ) ≡
∑

C,S|L(S)=T

σ(b, C, S). (15)

Step 6. There is an equilibrium σ that induces the distribution (α, σ̄) if and only if, for

all T ∈ T that satisfy T ⊆ N \N g,

α · d− F (T, b)

F (N, g)
≤

∑
T ′∈T |T ′⊇T

σ̄(T ′) (16)

with equality if σ̄(T ) > 0. (Recall that d is defined by (10).)

Proof. By Definition 2, σ is an equilibrium if and only if Mσ(b, C, S) ≤ M∗ for all

(b, C, S), with equality if σ(b, C, S) > 0. By Corollary 2 and Step 3, this inequality can

be written as follows:

α · F (C, b)

α +
∑

C′,S′|xS(b,C′)=xS(b,C) σ(b, C ′, S ′)
≤ F (N, g). (17)

By Step 5, C = N b\L(S). Therefore, the above inequality reduces to a linear inequality

in σ:

α · d− F (L(S), b)

F (N, g)
≤

∑
C′,S′|xS(b,C′)=xS(b,C)

σ(b, C ′, S ′). (18)

Again, by Step 5, if σ(b, C ′, S ′) > 0, then C ′ = N b\L(S ′), such that xS(b, C ′) = xS(b, C)

if and only if L(S ′) ⊇ L(S). This means that we can replace the R.H.S. of the last

inequality with the R.H.S. of (16).

Inequalities (16) enable us to construct the following algorithm that associates with

every equilibrium σ a unique distribution over ¯σ(T ) for every T ∈ T satisfying T ∈
N \N g.

The algorithm:

Let

T = {T ∈ T | T ⊆ N \N g and F (T, b) < d}.

Define

T 1 = {T ∈ T | there is no T ′ ∈ T such that T ⊂ T ′}

35



Now, for every k > 1, define T k recursively as follows:

T k = {T ∈ T | there is no T ′ ∈ T \ ∪j<kT j such that T ⊂ T ′}

Since T is finite, in this way we obtain a finite sequence {T k}Kk=1. This sequence identi-

fies all the “exclusionary” components of feasible narratives (i.e., those that scapegoat

groups in N \N g) that can accompany platforms with a policy of b.

The algorithm starts from the “top layer” of T (i.e., T 1) and then proceeds to the

other layers in order. For every T ∈ T 1, (16) can be written as

σ̄(T ) ≥ α · d− F (T, b)

F (N, g)
.

By the definition of T , the R.H.S. is strictly positive for every T ∈ T 1, which implies

that T is in the equilibrium support and therefore the inequality must hold with equality.

This pins down σ̄(T ).

For every T ∈ T , denote H(T ) ≡ {T ′ ∈ T | T ⊂ T ′}. By definition, if T ∈ T k,
then H(T ) ⊆ ∪j<kT j. We proceed by induction. Suppose that for all j < k and every

T ∈ T j, there exists w(T ) ≥ 0 such that

σ̄(T ) = αw(T ).

For T ∈ T 1, we have already established that w(T ) = (d−F (T, b))/F (N, g). For every

T ∈ T k, (16) becomes

σ̄(T ) = max

0 , α · d− F (T, b)

F (N, g)
− α

∑
T ′∈H(T )

w(T ′)

 (19)

where w(T ′) is well-defined for all T ′ ∈ H(T ), by the inductive step. This confirms that

σ̄(T ) = αw(T ), where

w(T ) = max

0 ,
d− F (T, b)

F (N, g)
−

∑
T ′∈H(T )

w(T ′)

 (20)

completing the inductive argument, and thus the definition of the algorithm for com-

puting σ̄(T ).
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Step 7. The algorithm establishes existence of an equilibrium σ and uniqueness of the

induced distribution (α, σ̄).

Proof. Since (α, σ̄) must define a probability distribution, we must have

α +
∑
T∈T

σ̄(T ) = 1.

Moreover, the algorithm produced unique expressions for each σ̄(T ) that depend mul-

tiplicatively on α (see (19) and (20)). This pins down the value of α,

α =
1

1 +
∑

T∈T w(T )
.

Thus, we have pinned down (α, σ̄). Since this pair satisfies all the inequalities (16), it

implies that the following distribution over platforms is an equilibrium: α = σ(g,N g, 0)

and σ̄(T ) = σ(b,N b \ T, T ) for every T ∈ T such that T ∈ N \N g.

Proof of Proposition 2

This result is a corollary of Step 6 in the proof of Theorem 1. Suppose 0 < F (T ) <

F (N, b) − F (N, g) for some T ⊆ N \ N g. Then, the L.H.S. of (16) is strictly positive.

Therefore, we must have σ̄(T ′) > 0 for some such T ′ ⊇ T . Conversely, suppose F (T ) ≥
F (N, b)−F (N, g) for all T ⊆ N \N g. In this case, the L.H.S of (16) is non-positive for

every such T . By Step 6, this implies σ̄(T ) = 0 for every such T .

Proof of Theorem 2

Let S∗ be the collection of coarse subcategories of the Left — i.e., a feasible tribal

narrative S ⊂ N \N g is in S∗ if there is no S ′ ∈ S such that S ⊂ S ′ ⊂ N \N g. Let

S¬∗ = {S ∈ S | S ⊂ N \N g and S /∈ S∗}.

For every S ∈ S, let B(S) = N \ (N g ∪ S) — i.e., B(S) is the set of Left groups that

do not belong to S. Finally, recall that we are focusing on essential equilibria.

We use the notation σ̄ as in the proof of Theorem 1. By (16) and (5),

σ̄(N \N g) = α · F (N g, b)− F (N, g)

F (N, g)
> 0. (21)
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Also, for S ∈ S∗, we have

σ̄(S) = α · d− F (S, b)

F (N, g)
− σ̄(N \N g) = α · F (N \N g, b)− F (S, b)

F (N, g)
> 0. (22)

These expressions establish that the Left and its coarse sub-categories are employed

with positive probability as tribal narratives in every essential equilibrium. The fol-

lowing lemma establishes that under property (ii), these are the only non-empty tribal

narratives that are employed.

Lemma 1. If property (ii) holds, then σ̄(S) = 0 for every non-empty S ∈ S¬∗.

Proof. Assume the contrary — i.e., property (ii) holds and yet there is S ∈ S¬∗ such

that σ̄(S) > 0. Select S such that there is no S ′ ∈ S¬∗ for which S ⊂ S ′ and σ̄(S ′) > 0.

We have

σ̄(S) ≥ α · d− F (S, b)

F (N, g)
− σ̄(N \N g)−

∑
S′∈S∗|S⊂S′

σ̄(S ′)

= α ·
(d− F (S, b)

F (N, g)
− F (N g, b)− F (N, g)

F (N, g)

−
∑

S′∈S∗|S⊂S′

F (N \N g, b)− F (S ′, b)

F (N, g)

)
=

α

F (N, g)
·
(
F (B(S), b)−

∑
S′∈S∗|S⊂S′

F (B(S ′), b)
)
. (23)

where the inequality follows from (16), and the subsequent equations result from us-

ing (21) and (22). If S satisfies property (ii), then

B(S) ⊆
⋃

S′∈S∗|S⊂S′
B(S ′),

which implies that the difference in (23) is weakly negative. Hence, σ̄(S) = 0, a

contradiction.

Part I (“if”): Suppose properties (i) and (ii) hold. Taken together, Lemma 1 and

equations (21) and (22) state that N \ N g and all S ∈ S∗ are in Supp(σ̄), and that

Supp(σ̄) includes no other non-empty S ⊂ N \N g.
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If σ̄(∅) > 0, then (16) becomes

α · d− F (∅, b)
F (N, g)

=
∑
S⊇∅

σ̄(S) = 1− α

which implies α = F (N, g)/F (N, b).

Now suppose σ̄(∅) = 0. Then,

1 = α + σ̄(N \N g) +
∑
S′∈S∗

σ̄(S ′) (24)

By the same calculation as in (23),

σ̄(∅) ≥ α

F (N, g)
·
(
F (N \N g, b)−

∑
S′∈S∗

F (B(S ′), b)
)
.

Since S satisfies property (i), B(S ′)∩B(S ′′) = ∅ for every S ′, S ′′ ∈ S∗. This implies that

the R.H.S. of the last inequality is non-negative. And since σ̄(∅) = 0, the R.H.S. must

be exactly zero. Using this observation and plugging (21) and (22) into (24), we obtain

1 = α
(F (N g, b)

F (N, g)
+
F (N \N g, b)

F (N, g)

)
= α

F (N, b)

F (N, g)
,

which again implies α = F (N, g)/F (N, b). Note that we reach this conclusion for any f

and, hence, for f such that F (N g ∩N b, b) > F (N, g).

Part II (“only if”): Suppose property (i) does not hold. Equations (21) and (22)

continue to hold. In particular, N \N g and every S ∈ S∗ are in Supp(σ̄). Note that

1 ≥ α + σ̄(N \N g) +
∑
S∈S∗

σ̄(S)

Plugging (21) and (22) in the R.H.S. yields

1 ≥ α

F (N, g)

(
F (N g, b) +

∑
S∈S∗

F (B(S), b)
)
.

Therefore, α < F (N, g)/F (N, b) if

F (N g, b) +
∑
S∈S∗

F (B(S), b) > F (N, b) (25)
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We claim that there exist values of F (N \N g, b) for which this happens, while holding

F (N, g) and F (N g ∩ N b, b) fixed. Since property (i) fails, there exist S, S ′ ∈ S∗ such

that B(S) ∩ B(S ′) 6= ∅. Thus, every i in this intersection is counted more than once

on the L.H.S. of (25). We can then choose f such that, for any i ∈ B(S) ∩B(S ′),

f(i, b) > F (N \N g, b)− F (B(S∗), b) = F
(
N \ (N g ∪B(S∗)), b

)
,

where B(S∗) ≡ ∪S∈S∗B(S).

Now, suppose property (i) holds but property (ii) fails. This failure implies that there

exists a non-empty S ∈ S¬∗ such that14

B(S) ⊃
⋃

S′∈S∗|S⊂S′
B(S ′). (26)

Moreover, we claim that there exists a non-empty S ∈ S¬∗ that satisfies (26) and σ̄(S) >

0. Suppose not. From Part I of this proof, we know that σ̄(S ′) = 0 if S ′ ∈ S¬∗ satisfies

property (ii). Therefore, for any non-empty S ∈ S¬∗ that satisfies (26), we can write

σ̄(S) ≥ α · d− F (S, b)

F (N, g)
− σ̄(N \N g)−

∑
S′∈S∗:S⊂S′

σ̄(S ′)

= α ·
(d− F (S, b)

F (N, g)
− F (N g, b)− F (N, g)

F (N, g)
−

∑
S′∈S∗|S⊂S′

F (B(S ′), b)

F (N, g)

)
= α ·

(F (B(S), b)

F (N, g)
−

∑
S′∈S∗|S⊂S′

F (B(S ′), b)

F (N, g)

)
> 0,

where the strict inequality follows using (26) and property (i) (which means that B(S ′)∩
B(S ′′) = ∅ for all distinct S ′, S ′′ ∈ S∗ such that S ⊂ S ′, S ′′). This contradicts the

premise that σ̄(S) = 0, proving our claim.

Now take any S ′ ∈ S¬∗ such that σ̄(S ′) > 0. Note that

1 ≥ α + σ̄(N \N g) +
∑
S∈S∗

σ̄(S) + σ̄(S ′)

=
α

F (N, g)

(
F (N g, b) +

∑
S∈S∗

F (B(S), b) + F (B(S ′), b)
)
.

14Note that if there is no non-empty S ∈ S¬∗, then property (ii) cannot fail. In this case, the proof
is complete.
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Therefore, α < F (N, g)/F (N, b) if

F (N g, b) +
∑
S∈S∗

F (B(S), b) + F (B(S ′), b) > F (N, b) (27)

We again claim that there exist values of F (N \N g, b) for which this inequality holds,

while keeping F (N, g) and F (N g∩N b, b) fixed. The reason is that since S ′ satisfies (26),

there exists

i ∈ B(S ′) ∩
⋃

S∈S∗|S′⊂S

B(S)

that is counted more than once on the L.H.S. of (27). Therefore, we can choose such i

and set f(i, b) such that

f(i, b) > F
(
N \

(
N g ∪B(S∗)

)
, b
)
.

This completes the proof.

Proof of Proposition 3

Let σ be the unique essential equilibrium. Since F (N, b) > F (N g, b) > F (N, g), The-

orem 1 implies that σ(g,N g, {0}) = α ∈ (0, 1). Let us now activate the algorithm de-

scribed in the proof of Proposition 1. The restriction to essential equilibria allows us to

identify any equilibrium platform with its narrative. Therefore, we will use the abbrevi-

ated notation σ̄(S) = σ(b, C, S). Also, for every S ⊂ N \N g, denote Sc = (N \N g) \S.

As in the proof of Theorem 2, σ̄(N \N g) is given by (21). Now consider the largest

feasible tribal narratives S ⊂ N \N g. By definition, these take the form

S = (N \N g) ∩ {i ∈ N | ik = w} (28)

where k ∈ {1, ...,m} and w ∈ {0, 1}. Denote this set of 2m narratives by S∗. By

definition, S * S ′ for any S ′ 6= S such that S ′ ⊂ N \ N g. Therefore, if σ̄(S) = 0 for

some S ∈ S∗ then the following inequality must hold:

α · F (N g ∪ Sc, b)− F (N, g)

F (N, g)
≤ σ̄(N \N g),
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which is a contradiction since F (N g∪Sc, b) > F (N g, b). It follows that for every S ∈ S∗,

σ̄(S) = α · F (Sc, b)

F (N, g)
> 0. (29)

The support of σ̄ contains no other narratives. To see why, recall that in Section 6.2,

we explained why the multi-attribute model satisfies property (ii). Therefore, applying

Lemma 1, we conclude that the support of σ̄ consists of the true narrative (whose

equilibrium probability is α), N \N g and all the narratives in S∗. By (21) and (29),

α + α · F (N g, b)− F (N, g)

F (N, g)
+ α · 1

F (N, g)

∑
S∈S∗

F (Sc, b) = 1. (30)

By definition,

F (S, b) + F (Sc, b) = F (N \N g, b)

for every S ∈ S∗. Therefore,∑
S∈S∗

F (Sc, b) = m · F (N \N g, b),

so that (30) implies (6).

Proof of Proposition 4

As explained in Section 6.3, every feasible S ⊆ N \N g is employed as an exclusionary

tribal narrative in the essential equilibrium. We will take this feature for granted, and

use the algorithm in the proof of Theorem 1 to derive the equilibrium probabilities of

all such narratives.

It will be convenient to translate the hierarchical multi-attribute model into a sys-

tem Π of nested partitions of the set N \N g. Let π0 = {N \N g} = {{i ∈ N | ik = 1 for

all k > m}}. For every ` = 1, ..., D, let π` consist of all sets of the form S ∩ {i ∈ N |
im−`+1 = v}, where S ∈ π`−1 and v ∈ {0, 1}. Thus, for instance, π1 consists of the two

cells N \N g ∩ {i ∈ N | im = 1} and N \N g ∩ {i ∈ N | im = 0}.

We make use of the same abbreviated notation σ̄ as in the proof of Proposition 3. As

in that case,

σ̄(N \N g) = α · F (N g, b)− F (N, g)

F (N, g)
.

This characterizes the equilibrium probability of the single cell that comprises π0. Now
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consider ` > 1. Given S` ∈ π`, the collection of sets H(S`) = {S ′ ∈ S | S` ⊂ S ′} in the

algorithm described in the proof of Theorem 1 takes the form of a chain {Sj}`−1
j=1 that

satisfies Sj ∈ πj and Sj+1 ⊂ Sj for all j < `. For S1 ∈ π1, we must have

σ̄(S1) =
α(d− F (S1, b))− α(d− F (S1, b))

F (N, g)
= α

F (S1 \ S2, b)

F (N, g)
.

Thus, the coefficient w(S2) in the proof of Theorem 1 is takes the form F (S1\S2, b)/F (N, g).

By induction,

σ̄(S`) = α
F (S`−1 \ S`, b)

F (N, g)
(31)

for every S` ∈ π`, ` = 1, . . . , D. This completes the characterization of the σ̄(S) for

every cell S in one of the nested partitions in Π.

Before the final step of the proof, it also needs to be shown that σ̄(∅) = 0. The

calculation that establishes this is straightforward but somewhat tedious, and we omit

it for brevity. The intuition is that while every cell in one of the nested partitions is

contained by a relatively small number of other cells, ∅ is contained by all of these

cells. As a result, the R.H.S. of (16) is too large for this inequality to be binding for

S = ∅, which means that σ̄(∅) = 0.

It remains to calculate α. For every S` ∈ π`, let S`−1 be again the antecedent of S`

in the chain {Sj}`−1
j=1 that we used above. For every S ∈ π`, let P (S) be the unique cell

S ′ ∈ π`−1 such that S ⊂ S ′. Given this, and plugging (31), we have

1 = α +
∑

S⊆N\Ng

σ̄(S)

=
α

F (N, g)

{
F (N, g) + d− F (N \N g, b) +

D∑
`=1

∑
S∈π`

F (P (S) \ S, b)

}

=
α

F (N, g)

{
F (N g, b) +

D∑
`=1

∑
S∈π`

F (P (S) \ S, b)

}
.

To further simplify this expression, we now use the assumption that each cell in π`−1

has exactly two subsets in π`. Using this, we can rewrite the last condition as

1 =
α

F (N, g)
{F (N g, b) +D · F (N \N g, b)} ,

which implies (8).
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Proof of Proposition 6

In this proof, we denote platforms by z whenever convenient to simplify notation. For

every t, let z̄t = (āt, C̄t, S̄t) ∈ arg maxzMσt(z) be the dominant platform at period t

and let Mσt = Mσt(z̄t) be the payoff it generates. Note that if there exists T such

that z̄t 6= (a, C, S) for all t ≥ T , then σt(a, C, S) → 0 as t → ∞. Recall that M∗ =

q · F (N g, g) > 0. The proof proceeds stepwise.

Step 1. Mσt ≥M∗ for every t.

Proof. Since σ1 has full support, σt(g,N
g, {0}) > 0 for every finite t; therefore, Mσt ≥

Mσt(g,N
g, {0}) = M∗ for every t.

Step 2. If z̄t = (g, C, S), then C = N g and Mσt(g, C, S) = M∗.

Proof. For every platform (g, C, S) such that C ⊂ N g, Mσt(g, C, S) < Mσt(g,N
g, {0})

because Prσt(y = G | xS(g, C)) ≤ q and F (C, g) < F (N g, g). This also implies that

Mσt(g,N
g, S) ≤M∗ for all S and hence the last equality.

Step 3. For all t, there exists t′ > t such that z̄t′ = (g,N g, S) for some S.

Proof. Step 1 implies that

lim inf
t→∞

Mσt ≥M∗.

Suppose there exists t such that z̄t′ = (b, C̄t′ , S̄t′) for all t′ ≥ t. This implies that

Prσt(y = G | xS̄t
(āt, C̄t))→ 0, which is inconsistent with lim inft→∞Mσt > 0.

Step 4. lim inf Mσt = M∗.

Proof. We have already established that lim inft→∞Mσt ≥M∗. Note that, if Mσt > M∗,

then z̄t = (b, C, S) for some C and S, because Mσt(g, C
′, S ′) ≤ M∗ for all C ′ and S ′.

Now suppose lim inft→∞Mσt > M∗. Then, there exists T such that for all t ≥ T , z̄t

involves policy a = b. This contradicts Step 3.

Recall that

Prσt(y = G | xS(a, C)) = q ·
∑

C′,S′|xS(g,C′)=xS(a,C) σt(g, C
′, S ′)∑

a′,C′,S′|xS(a′,C′)=xS(a,C) σt(a
′, C ′, S ′)
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Step 5. If z̄t = (g,N g, Ŝ) and xS(N g, g) = xS(b, C), then

Prσt+1(y = G | xS(b, C)) > Prσt(y = G | xS(b, C))

Proof. Given z̄t = (g,N g, Ŝ), for every (b, C, S) such that xS(g,N g) = xS(b, C),

Prσt+1(y = G | xS(b, C)) = q
1
t+1

+ t
t+1

∑
C′,S′|xS(g,C′)=xS(b,C) σt(g, C

′, S ′)
1
t+1

+ t
t+1

∑
a′,C′,S′|xS(a′,C′)=xS(b,C) σt(a

′, C ′, S ′)

= q
1
t

+
∑

C′,S′|xS(g,C′)=xS(b,C) σt(g, C
′, S ′)

1
t

+
∑

a′,C′,S′|xS(a′,C′)=xS(b,C) σt(a
′, C ′, S ′)

> q

∑
C′,S′|xS(g,C′)=xS(b,C) σt(g, C

′, S ′)∑
a′,C′,S′|xS(a′,C′)=xS(b,C) σt(a

′, C ′, S ′)
= Prσt(y = G | xS(b, C))

Step 6. If z̄t = (b, Ĉ, Ŝ), then for every (b, C, S),

Prσt+1(y = G | xS(b, C)) ≤ Prσt(y = G | xS(b, C))

with strict inequality if and only if xS(b, Ĉ) = xS(b, C).

Proof. If z̄t = (b, Ĉ, Ŝ) and xS(b, Ĉ) 6= xS(b, C), then by definition, Prσt+1(y = G |
xS(b, C)) = Prσt(y = G | xS(b, C)). Now suppose that z̄t = (b, Ĉ, Ŝ) and xS(b, Ĉ) =

xS(b, C). Then,

Prσt+1(y = G | xS(b, C)) = q
t
t+1

∑
C′,S′|xS(g,C′)=xS(b,C) σt(g, C

′, S ′)
1
t+1

+ t
t+1

∑
a′,C′,S′|xS(a′,C′)=xS(b,C) σt(a

′, C ′, S ′)

= q

∑
C′,S′|xS(g,C′)=xS(b,C) σt(g, C

′, S ′)
1
t

+
∑

a′,C′,S′|xS(a′,C′)=xS(b,C) σt(a
′, C ′, S ′)

< q

∑
C′,S′|xS(g,C′)=xS(b,C) σt(g, C

′, S ′)∑
a′,C′,S′|xS(a′,C′)=xS(b,C) σt(a

′, C ′, S ′)
= Prσt(y = G | xS(b, C))

Step 7. If (b, C, S) is such that xS(b, C) 6= xS(g,N g), then σt(b, C, S)→ 0 as t→∞.

Proof. Suppose σt(b, C, S) 6→ 0. Then, there exists a subsequence such that σt(b, C, S)→
σ̂ > 0, which implies that the denominator of Prσt(y = G|xS(b, C)) converges to a

strictly positive number along the subsequence. However, the numerator of Prσt(y =
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G|xS(b, C)) converges to zero by Step 2, because σt(g, C
′, S ′)→ 0 if xS(g, C ′) = xS(b, C)

and hence C ′g. Therefore, Mσt(b, C, S) → 0 along the subsequence, which contradicts

σt(b, C, S)→ σ̂ > 0.

Step 8. If (b, C, S) is such that xS(b, C) = xS(N g, g), then

lim inf
t→∞

∑
C′,S′|xS(g,C′)=xS(b,C)

σt(g, C
′, S ′) = lim inf

t→∞

∑
S′

σt(g,N
g, S ′) ≡ σ > 0

Proof. The first equality follows because σt(g, C
′, S ′)→ 0 if C ′g by Step 2 and because

xS(b, C) = xS(g,N g). The last inequality is strict because, if σ = 0, there exists a

subsequence such that
∑

C′,S′ σt(g, C
′, S ′)→ 0 and hence σt(b, C, S)→ σ̂ > 0 for some

(b, C, S) such that xS(b, C) = xS(g,N g). However, in this case there exists T such that

for all t ≥ T in this subsequence the numerator of Prσt(y = G | xS(b, C)) becomes

arbitrarily small and hence Mσt(b, C, S) < M∗, which is inconsistent with σ̂ > 0.

Step 9. lim supt→∞Mσt ≤M∗.

Proof. Suppose lim supt→∞ Mσt = M̄ > M∗. Let

P̄ =

{
(b, C, S) | lim sup

t→∞
Mσt(b, C, S) = M̄

}
,

which must be non-empty because the set of platforms is finite. Note that (b, C, S) ∈ P̄
only if xS(b, C) = xS(g,N g). By finiteness of P̄ , there exists a common subsequence,

T , and ε > 0 such that for all t′ ≥ T in this subsequence Mσt′
(b, C, S) ≥M∗ + ε for all

(b, C, S) ∈ P̄ . By Step 3, there must exist a t > T (not necessarily in the subsequence)

such that z̄t = (g,N g, S) and hence Mσt = M∗. Therefore, Mσt(b, C, S) ≤ M∗ for all

(b, C, S) ∈ P̄ . By Step 5, for all (b, C, S) ∈ P̄ ,

Mσt+1(b, C, S)

Mσt(b, C, S)
=

(
1
t
+
∑

C′,S′|xS(g,C′)=xS(b,C) σt(g,C
′,S′)

1
t
+
∑

a′,C′,S′|xS(a′,C′)=xS(b,C) σt(a
′,C′,S′)

)
( ∑

C′,S′|xS(g,C′)=xS(b,C) σt(g,C
′,S′)∑

a′,C′,S′|xS(a′,C′)=xS(b,C) σt(a
′,C′,S′)

)

<

(
1
t
+
∑

C′,S′|xS(g,C′)=xS(b,C) σt(g,C
′,S′)∑

a′,C′,S′|xS(a′,C′)=xS(b,C) σt(a
′,C′,S′)

)
( ∑

C′,S′|xS(g,C′)=xS(b,C) σt(g,C
′,S′)∑

a′,C′,S′|xS(a′,C′)=xS(b,C) σt(a
′,C′,S′)

)
=

1
t∑

C′,S′|xS(g,C′)=xS(b,C) σt(g, C
′, S ′)

+ 1
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which converges to 1 as t → ∞ by Step 8. Therefore, for every δ > 0, we can pick T

large enough such that, for all t ≥ T such that z̄t = (g, C, S),

Mσt+1(b, C, S)

Mσt(b, C, S)
≤ 1 + δ

for all (b, C, S) ∈ P̄ . Finally, this means that we can also pick T and t ≥ T so that z̄t =

(g, C, S) and Mσt+1(b, C, S) < M∗ + ε for all (b, C, S) ∈ P̄ . Therefore, Mσt+k
(b, C, S) <

M∗ + ε for all (b, C, S) ∈ P̄ and all k ≥ 1, because by Step 6 the payoff of (b, C, S) is

weakly decreasing when Mσt(b, C, S) > M∗. We, thus, reach a contradiction.

Steps 4 and 9 imply that limt→∞ Mσt = M∗. Now, denote by Σ the set of limit points

of σt.

Step 10. All σ ∈ Σ must induce the same joint distribution over (a, C), and this

distribution must coincide with the unique equilibrium distribution.

Proof. Note that Mσ(z) is continuous in σ for all z. The previous conclusion implies

that, for every σ ∈ Σ and every z, Mσ(z) ≤ M∗, with equality for z ∈ Supp(σ). The

equilibrium characterization results in Sections 4 and 5 established that every σ that

satisfies this property induces the same distribution over (a, C).

This completes the proof.
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