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Abstract. A representative researcher has repeated opportunities for empirical research.

To process findings, she must impose an “identifying assumption” ensuring that repeated

observation would provide a definitive answer to her question. She conducts research when

the assumption is sufficiently plausible (given the quality of the opportunity and her current

belief), and updates beliefs as if the assumption were perfectly valid. We study the dynamics

of this learning process. While the rate of research cannot always increase over time, research

slowdown is possible. We characterize environments in which the rate is constant. Long-

run beliefs can be biased and history-dependent. We apply the model to stylized examples

of empirical methodologies: experiments, causal-inference techniques, and more structural

identification methods such as “calibration” and “Heckman selection.”

1. Introduction

In economics and other social sciences, researchers and their audiences regularly rely on

identifying assumptions to communicate and to interpret empirical findings. These (often

untestable) assumptions enable the research community to draw clear-cut conclusions from

observations. For instance, assuming that the assignment of agents into treatments was

random allows a causal interpretation of the difference between the treatments’ outcomes.

Such assumptions rarely hold exactly, so researchers tend to focus on and learn from the

settings in which plausible identification can be achieved.

In contrast, identifying assumptions do not play a central role in Bayesian learning.

Bayesianism is the standard model of rational learning under uncertainty, and therefore
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a natural benchmark for how research is (or should be) conducted.1 A Bayesian research

community holds a prior probabilistic belief regarding a research question, accumulates evi-

dence (in the form of controlled experiments or observational data), and updates its beliefs

in light of the evidence via Bayes’ rule. While assumptions may inform the community’s

prior beliefs, they do not explicitly feature in the subsequent learning process.

This paper proposes a bridge between these two views, by studying a research process in

which identifying assumptions are necessary to conduct and to interpret research but oth-

erwise remains faithful to Bayesianism. The research community accepts a piece of research

only when it is conducted under a sufficiently plausible identifying assumption. When the

assumption fails this criterion, the study is ignored (or not carried out in the first place), and

researchers wait for the next learning opportunity. The assumption’s plausibility depends

both on the specifics of the research opportunity and on the community’s beliefs, and so

whether or not the research is conducted or processed depends on past decisions. When the

study is carried out, the identifying assumption informs how its results are incorporated into

beliefs.

There are two key differences between this assumption-based research process and stan-

dard Bayesian learning, which raise a number of questions. First, under Bayesianism, learn-

ing occurs whenever information arrives. In contrast, under the assumption-based process,

opportunities to learn are passed over whenever the identification strategy is deemed implau-

sible, a judgment that itself relies on the community’s current beliefs. Therefore, learning can

speed up or slow down even when research opportunities arrive at a constant rate. How does

the propensity to conduct research evolve under our process? Does it give rise to “research

slowdown”? Do certain identification strategies die out or become more common over time?

Second, under Bayesian learning, it is well-known that beliefs converge to the truth when the

prior belief is not misspecified and evidence is sufficiently informative. Do the long-run be-

liefs induced by our assumption-based learning process exhibit bias or history-dependence?

Addressing these questions may shed light on how the reality of scientific learning (which

1Bayesianism has the added normative appeal that, since Savage (1954), it has been understood to be well-
integrated with dynamic expected-utility maximization, the standard normative model of rational choice.
For a book-length argument for Bayesian scientific learning, see Howson and Urbach (2006).
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involves the continual use of assumptions) diverges from the strict Bayesian prescription (in

which assumptions play no role once the learning process is set in motion).

We construct a simple model of dynamic learning by a representative researcher, a stand-

in for the relevant research community. The researcher has a prior belief over a multi-

dimensional state of Nature. We refer to each component of the state as a “fixed parameter.”

The researcher is interested in determining the values of certain fixed parameters (e.g., the

effect of a good teacher on test performance). She faces a sequence of research designs of

random quality, given by i.i.d. “context parameters” (e.g., the extent to which assignment

of students to teachers in a data set is random). Both fixed and context parameters directly

affect the data-generating process of the study (if it is carried out). To interpret her findings,

the researcher must make an identifying assumption. The assumption fixes the value of the

context parameters in such a way that if the study were independently repeated enough

times, the results would produce a definitive answer to the research question (e.g., assuming

that student assignment is perfectly random). Effectively, an identifying assumption says

that all sources of noise other than sampling error can be safely ignored, at least as far as

answering the question is concerned.

The researcher’s decision whether to impose the assumption is based on a judgment of its

plausibility, given the quality of the research design at hand and her beliefs about the fixed

parameters. She compares her beliefs about the distribution of variables under the actual and

assumed values of the context parameters. If the Kullback-Leibler (KL) divergence between

the two distributions exceeds a threshold, she deems the assumption implausible and passes

over the opportunity to conduct research. Otherwise, she deems the assumption plausible,

conducts the study, observes its result as determined by the true data-generating process, and

updates her beliefs as if the assumption held for sure. While a Bayesian would incorporate

any doubts about the assumption’s validity into her posterior, processing and communicating

such multi-dimensional uncertainty is quite demanding. Our researcher performs a more

straightforward task: she updates her beliefs as if it holds exactly, leaving out the uncertainty

about its validity. (A more realistic account would have the researcher’s posterior belief

put undue weight on this update but consider others as well. However, our admittedly
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extreme assumption makes the model more tractable and contains a kernel of truth, namely

people’s tendency to invoke “working hypotheses” to facilitate information processing and

later downplay or forget their tentativeness and regard them as facts.2)

We study the dynamics and long-run behavior of our learning process. Our focus is on how

the propensity to conduct research (via the imposition of the identifying assumption) changes

as the research community’s beliefs evolve over time. We show that this propensity cannot

always increase over time. In other words, the research community cannot consistently lower

its standards for accepting research as time goes by. It may, however, continually raise

these standards, leading to a uniform slowdown in the rate of research. Intuitively, as the

researcher’s belief gets more precise, she becomes more sensitive to the assumption’s rough

edges and therefore more reluctant to impose it. We also provide a sufficient condition for a

time-invariant propensity to conduct research. The condition is expressed as a conditional-

independence property of the joint distribution over parameters and variables using tools

from the literature on graphical probabilistic models (e.g., Pearl (2009)).

As to the long-run beliefs induced by the learning process, we define a stable belief to be one

that the updating process converges to with positive probability. We show that stable beliefs

concentrate on the states that lead to a distribution of observable variables conditional on

the identifying assumption that is closest to their empirical distribution (given the true state

and the contexts in which research is conducted). In turn, the contexts in which research is

conducted are determined by the stable belief. This two-way relation between stable beliefs

and the contexts in which research takes place makes stable beliefs an equilibrium object.

Indeed, our concept of stable beliefs is subtly related to Berk-Nash equilibrium (Esponda

and Pouzo, 2016), a basic notion of stable behavior when agents operate under misspecified

models.

Our second main task is to demonstrate the model’s scope with stylized examples of empir-

ical methodologies. One example considers experimental research contaminated by “interfer-

ence” (the identifying assumption rules out the interference). We show that the propensity

2Empirical researchers may wince at our reduction of their rich, multi-faceted practice to a simplistic, dis-
torting caricature. In that they would join CEOs, workers, and married couples, who have suffered a similar
fate under generations of economic theorists.
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to conduct the experiment decreases over time with probability one. Another example exam-

ines causal inference contaminated by confounding effects (the identifying assumption is that

no such confounding exists). A variation on this example addresses instrumental-variable

designs (the identifying assumption is that the instrument is independent of a latent con-

founder). In both variants, propensity to conduct research remains constant. In all three

examples, researchers eventually become certain of the answer to the question, but their

answer differs from the true answer almost surely.

Later in the paper, we present two examples that expand the notion of identifying assump-

tions to include assumptions about the fixed parameters. These examples also shed light on

situations in which the representative researcher chooses from a set of candidate identifying

assumptions. First, we consider an example in which the researcher tries to identify two fixed

parameters but can only do so in piecemeal fashion, employing an identifying strategy that is

reminiscent of the “calibration” method in quantitative macroeconomics. Second, we present

a stylized model of inference from selective samples, where the researcher wishes to learn

the returns to a certain activity. The researcher considers two identifying assumptions: (1)

agents’ selection into this activity is purely random, or (2) selection is systematically related

to observable variables that do not directly affect returns. The latter is a structural identi-

fying assumption that captures in stylized form the method of Heckman selection Heckman

(1979). Hopefully, these examples demonstrate that our modeling approach can shed light

on the evolution of inference methods in empirical economics and neighboring disciplines.

Our paper continues a recent literature on Bayesian learning under misspecified subjective

prior beliefs (e.g., Esponda and Pouzo (2016), Fudenberg et al. (2017), Heidhues et al. (2021),

Bohren and Hauser (2021), Esponda and Pouzo (2021), Frick et al. (2020)). One difference

is in motivation, as our paper is an attempt to explore the dynamics of scientific research,

rather than learning by boundedly rational agents. Another difference is that in our model,

the subjective prior is an endogenous choice by the researcher. A subset of the literature

(e.g., Cho and Kasa (2015) and Ba (2024)) incorporated continual model selection and

misspecification tests into the learning process. We discuss the relation to this sub-literature

in Section 2.
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The econometrics literature contains methodological discussions of the role of identify-

ing assumptions in econometric inference (e.g., Rothenberg (1971), Manski (2007), Lewbel

(2019)). However, we are not aware of earlier discussions of how identification methods

could be reconciled with the Bayesian approach. Manski himself has been a consistent critic

of empirical researchers’ use of strong identifying assumptions, which in his view reflects

the “lure of incredible certitude” (e.g., see Manski (2020)). Our model may be viewed as a

tentative attempt at a descriptive model of the phenomenon that Manski criticizes.

Finally, our paper joins an evolving literature that proposes models of non-Bayesian re-

searchers. Andrews and Shapiro (2021) show that conventional loss-minimizing estimators

may be suboptimal when consumers of the researcher are Bayesian with heterogeneous priors.

Banerjee et al. (2020) describe researchers as ambiguity averse max-miners. Spiess (2024)

models strategic choice of model misspecification by researchers. In relation to this litera-

ture, our paper is (to our knowledge) the first descriptive model of the role of assumptions

in how researchers interpret empirical observations.

2. A Model

A research community cares about a question whose answer is determined by an unknown

collection of fixed parameters ω ∈ Ω ⊂ Rn. We occasionally refer to ω as the state. The

research question is formalized as a subset Q ⊆ {1, ..., n}, indicating the fixed parameters

that the researcher wishes to learn.

Time is discrete. At every period t = 1, 2, ..., a real-valued vector θt ∈ Θ of context

parameters is realized. We will often refer to a realization of θ as a context. While ω

represents structural constants of a phenomenon of interest (e.g., returns to education), θ

represents transient, circumstantial aspects of a periodic data set (e.g., whether assignment

of students to educational treatments in a particular setting is random). We assume that

Θ is compact and convex. If research is conducted in period t, then a vector of observed

variables (referred to as statistics) st ∈ S and a vector of unobserved variables ut ∈ U

are generated. We require that each of S, U,Θ is a subset of some Euclidean space. For
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expositional convenience, the key definitions in this section proceed as if S, U,Ω are all

finite; extension to the continuum case is straightforward.

The data-generating process p that governs the realization of (u, s) at every time period

satisfies

p
(
ut, st|θt, ω

)
= p

(
ut
)
p
(
st|ut, θt, ω

)
.

We assume that p is continuous in θ and that p (·|θ, ω) has full support for every θ, ω. The

context parameters and unobserved variables are distributed independently and identically

across periods.

An assumption is an element θ∗ ∈ Θ. We say that an assumption θ∗ is identifying for

Q if for every ω, ψ ∈ Ω such that ωi ̸= ψi for some i ∈ Q, there exists s ∈ S such that

p(s | ω, θ∗) ̸= p(s | ψ, θ∗). The interpretation is that if the assumption holds, repeated

observation of s eventually provides a definitive answer to the research question. We assume

that there is a single feasible identifying assumption, and denote it θ∗. Since the assumption

only pertains to the context parameter, we refer to it as “contextual”. (In Section 5, we

will allow for multiple feasible identifying assumptions, including assumptions about fixed

parameters.)

Example. (Contaminated experiments) To illustrate the primitives of our model, suppose

the research community wants to identify a behavioral effect from experimental data which

is contaminated by “friction.” Specifically, there is a single statistic, given by

st = ω1 + θtω2 + εt,

where ω1 is the fixed parameter that the researcher wants to learn, i.e., Q = {1}. The

parameter ω2 represents the friction’s strength, the context parameter θ captures how well

circumstantial experimental design manages to curb the friction, and εt ∼ N(0, 1) is inde-

pendently drawn each period. There are no latent variables. To illustrate this specification,

think of ω1 as the degree of intrinsic altruism in a certain social setting, while ω2 represents

how much the subjects want an outside observer to perceive them as altruistic. The only

feasible identifying assumption is θ∗ = 0, since under any θ ̸= 0, ω and
(
ω1 − k, ω2 + k

θ

)
generate the same distribution for any k. �
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We are now ready to describe the learning process. At the beginning of period 1, a

representative researcher has a prior belief µ ∈ ∆(Ω). We assume that according to this

belief, all n components of ω are statistically independent of each other. The researcher

knows p, as well as the distribution from which θ is drawn.

At every period t, the researcher makes the binary decision at ∈ {0, 1}, indicating whether

to conduct research. Entering the period, she has beliefs described by µ (·|ht) that depend

on the history ht = (aτ , sτ , θτ )τ<t and she observes the current context θt. If the researcher

chooses at = 0, she passes over the opportunity to conduct research. She does not update her

beliefs, and so the next research opportunity, arising at period t+ 1, is evaluated according

to the same belief as in period t. If the researcher chooses at = 1, she conducts research and

updates her beliefs so that

µ (ω|ht, st, at = 1, θt)
µ (ψ|ht, st, at = 1, θt) = µ (ω|ht) p (st|ω, θ∗)

µ (ψ|ht) p (st|ψ, θ∗) (1)

for every ω, ψ ∈ Ω. When she observes st and updates her belief over Ω, she does so as if

the assumption θ∗ held.

We denote by pS,U (·|θt, ht) the researcher’s marginal probability over (st, ut) at period t,

given (θt, ht). Because every time the researcher updates, she does so as if the context is θ∗,

pS,U (·|θt, ht) only depends on the public part of ht, namely (sτ ){τ :aτ =1}, and the context θt.

Since the distribution of ut is known and independent of (θt, ht), the only non-trivial aspect

of pS,U is the conditional distribution of st.

We now describe the researcher’s choice of at. The KL divergence of the variables’ distri-

bution given θt, ht from the distribution given θ∗, ht is

DKL

(
pS,U

(
·|θt, ht

)
|| pS,U

(
·|θ∗, ht

))
=
∑
s,u

p
(
s, u|θt, ht

)
ln
(
p (s, u|θt, ht)
p (s, u|θ∗, ht)

)
.

If this quantity exceeds a constant K > 0, then the assumption is deemed implausible and

the researcher chooses at = 0. Otherwise, she chooses at = 1 and conducts research.

The interpretation of the learning process is as follows. The researcher can only update

her beliefs under an identifying assumption, but will do so only if she deems the assumption
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sufficiently plausible. Plausibility is captured by how likely on average the variable realiza-

tions are under the actual context θt relative to the assumed one θ∗. KL divergence is a

standard measure of this likelihood-based notion of plausibility. The likelihood judgment is

based on the researcher’s current beliefs. We refer to the decision to process the data at a

given period as if it is a decision whether to conduct the research at that period. This fits

an interpretation that the plausibility judgment is made by the researcher herself. Alterna-

tively, it could be viewed as a decision by the research community (embodied by seminar

audiences and journal referees) whether to “take the research seriously” and incorporate it

into its collective knowledge. Under both interpretations, the plausibility judgment at any

given period is made before the research results are observed.

The plausibility judgment has a few noteworthy features. First, it depends only on the

current period’s context and the current belief µ (·|ht). Accordingly, the set of values of θ for

which the researcher conducts research given the belief µ is denoted ΘR (µ). Second, since

p (·|θ, ω) has full support, the KL divergence is always finite, and a wrong assumption can

never be categorically refuted by data. Third, the plausibility judgment takes into account

the assumption’s effect on the distribution of both observed (s) and latent (u) variables.

This aspect of our model reflects our observation of real-life discussions of identification

strategies in empirical economics. To give a concrete example, evaluation of the plausibility

of an instrumental variable is based on a judgment of whether the (observed) instrument

is correlated with (unobserved) confounding variables. Finally, the constant K captures

the research community’s tolerance to implausible assumptions. While this tolerance can

reflect an underlying calculation of costs and benefit of doing research, we do not explicitly

model this calculus. Since the research community knowingly chooses to distort its beliefs

by making wrong assumptions, it is not obvious how one should model such a cost-benefit

analysis.

In our model, an assumption that underlies a particular study is subjected to a binary, “up

or out” plausibility judgment. When the outcome of this evaluation is affirmative, beliefs

regarding the research question are updated as if the assumption were perfectly sound. Once

an assumption is accepted in a certain context, subsequent research never put its contextual
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plausibility in doubt again. This feature seems to be consistent with our casual observation

that debates over the adequacy of an identification strategy for a particular study play an

important role in the research community’s decision whether to admit the study (amplifying

its exposure in seminars and conferences, accepting it for publication in prestigious journals,

etc.), yet subsequent references to the published study rarely re-litigate the identification

strategy’s appropriateness for that particular study.

Throughout the paper, we take the assumption-based, semi-Bayesian learning process as

given, without trying to derive it from some explicit optimization problem. Informally, how-

ever, we can think of two broad motivations behind the reliance on identifying assumptions.

First, if repeated observations did not produce a definitive answer to the research question,

long-run beliefs about it would remain sensitive to subjective prior beliefs, thus defeating one

purpose of the scientific enterprise, which is to produce consensus answers. Second, the strict

Bayesian model requires the research community to hold, process and communicate multi-

dimensional uncertainty. When researchers interpret empirical evidence, they need to take

into account various sources of noise that interfere with the mapping from the underlying

object of study to empirical evidence. When researchers are uncertain about the magnitude

and direction of such interferences, Bayesian learning requires them to carry this “secondary”

uncertainty throughout the updating process in addition to the uncertainty regarding the

research question. This multi-dimensional updating is inherently difficult to conduct and to

communicate to other members of the research community. Identifying assumptions reduce

this complexity by removing secondary uncertainties.

The plausibility judgment in our model is reminiscent of learning models in which agents

choose periodically whether to adopt a subjective model on the basis of validation or mis-

specification tests (e.g., Cho and Kasa (2015) and Ba (2024)). Our model departs from this

literature in several respects. First, in our model the misspecified belief about the value of

context parameters originates from the need to identify selected fixed parameters. Second,

in our model the decision whether to adopt the misspecified belief is based on the agent’s

current belief (via the KL divergence-based criterion). Third, in our model the agent does
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not takes actions that affect the data-generating process. Finally, we pose a different set of

questions, motivated by our interest in research dynamics.

3. Examples

In this section we illustrate the model with two examples. Our aim is to showcase the

model’s expressive scope, as well as give a taste for the kind of learning dynamics that it can

give rise to. Throughout, we refer to the first as the “Contaminated Experiment” and the

second as the “Causal Inference” example

3.1. Contaminated Experiment. We revisit the example from Section 2. The researcher’s

prior belief over ωi at the beginning of period t is N
(
mt

1, (σt
i)

2), independently of the other

component of ω. The distribution of st conditional on ω and θt is thus N (ω1 + θtω2, 1).

When the researcher assumes θ∗ = 0, she can learn nothing about ω2 from observations of

s. It follows that whenever the researcher updates her beliefs, she does so as if θ = 0, and

her beliefs over ω2 never evolve (accordingly, we will remove the time index from the mean

and variance of ω2). The distribution of s conditional on θ is

N
(
mt

1 + θm2, 1 +
(
σt

1

)2
+ θ2σ2

2

)
.

Using the standard formula for KL divergence between two scalar Gaussian variables,

DKL

(
pS

(
·|ht, θt

)
||pS

(
·|ht, θ∗

))
= 1

2

[(
θt
)2 σ2

2 +m2
2

1 + (σt
1)

2 − ln
(

1 + (θt)2
σ2

2

1 + (σt
1)

2

)]
.

Thus, the only time-varying elements that affects the propensity to experiment are σt
1 and

θt.

The divergence is continuous and increasing in θt, and vanishes when θt = 0. Consequently,

there exists a threshold θ̄ (σt
1) > 0 such that the researcher conducts research if and only if

θt ∈
[
0, θ̄ (σt

1)
]
. Holding θt fixed, divergence decreases in σt

1, so the threshold for conducting

research θ̄ (·) increases in σt
1.

Recall that when she does so, she updates her belief as if θt = 0. Using the standard

formula for updating a normal distribution, σt+1
1 = σt

1

(
(σt

1)
2 + 1

)− 1
2 . That is, σt

1 decreases

monotonically over time. Therefore, the propensity to conduct research uniformly decreases



IDENTIFYING ASSUMPTIONS AND RESEARCH DYNAMICS 12

over time. As the researcher becomes more certain of her belief over ω1, she also becomes

more sensitive to the noise and so more reluctant to assume it away. In other words, her

standards for what passes as adequate research design increase over time. This slows down

the rate of learning.

However, learning takes place with positive frequency in the long run. To see why, note

that as σt
1 → 0, the divergence converges to

θ̄ (0) = 1
2

[(
σ2

2 +m2
2

) (
θt
)2
− ln

(
1 +

(
θt
)2
σ2

2

)]
<∞

This means that θ̄ (0) > 0, and research takes place with positive probability, regardless of

the researcher’s current belief. This non-vanishing learning implies that σt
1 → 0 as t → ∞.

In this long-run limit, research is carried out when θ ∈
[
0, θ̄ (0)

]
. This means that the

researcher’s long-run belief over ω1 assigns probability one to

ω1 + E
(
θ|θ < θ̄ (0)

)
ω2.

Thus, the long-run estimate of the effect of interest is biased in proportion to the true value of

the friction parameter ω2. The magnitude of the bias also increases with σ2
2 (the researcher’s

time-invariant uncertainty over the friction parameter) since θ̄ (0) increases with σ2
2.

To summarize our findings in this example, the researcher’s propensity to learn decreases

over time but remains positive in the long run. This in turn means that the long-run answer

to the research question is biased. The bias is proportional to the true value of the fixed

friction parameter, and increases (in absolute terms) with the researcher’s uncertainty over

it.

Comment on feasible identification strategies. Our claim that the only feasible identifying

assumption in this example is θ∗ = 0 rests on our assumption that this judgment is made

for each time period in isolation. Suppose we observe the long-run distribution of s for two

known values of θ. Then, we have two equations with two unknowns (ω1 and ω2), and we

can therefore pin down both. It follows that if the identification judgment could be made by

combining multiple contexts (given by different values of θ), there would be no need to make

wrong identifying assumptions. This “triangulating” identification strategy would work in
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most of the examples in this paper. However, it is inconsistent with the research practice we

are familiar with, where the identification constraint is applied to each research in isolation.

Our example thus suggests that the practice of thinking about pieces of research in isolation

leads to biases in the process of scientific learning.

3.2. Confounded causal inference. Determining the causal effect of one variable on an-

other is a central task for empirical researchers. A key difficulty here is that the effect is often

masked by an unobserved confounding variable that affects both observable variables. We

now present a stylized example of causal inference from observational data in the presence

of a potential confounder.

There are two observable variables, s1 and s2. The researcher wants to learn the causal

effect of the former on the latter. This effect is parameterized by ω2 ∈ (−1, 1), i.e., Q =

{2}. However, the observed correlation between the two variables is confounded by a latent

variable u that affects both. The fixed parameter ω1 ∈ (−1, 1) captures the strength of this

confounding effect. The context parameter θ ∈ [0, 1] captures the extent to which a given

data set manages to shut down this confounding channel. More explicitly,

s1 = θω1u+ ε1

s2 = ω2s1 + ω3u+ ε2

where u ∼ N (0, 1) and εi ∼ N (0, σ2
i ) for i = 1, 2, independently of each other. There

is no uncertainty regarding ω3 > 0. Set this parameter and the variances σ2
1 and σ2

2 such

that si|ω, θ ∼ N (0, 1) for each i = 1, 2 θ, and ω.3 It follows that the only aspect of the

long-run distribution of (s1, s2) that could potentially shed light on the state is the pairwise

correlation between the two statistics,

ρ12 (θ, ω) = θ2ω2
1ω2 + θω1ω3 + ω2.

It is evident from the equation for ρ12 (θ, ω) that the only feasible identifying assumption

is θ∗ = 0. As in the previous example, this assumption prevents any learning about the

other fixed parameter (ω1). Observe that ρ12 (θ∗ = 0, ω) = ω2. Hence, under the identifying
3That is, σ2

1 = 1− θ2ω2
1 and σ2

2 = 1− ω2
2 − ω2

3 − 2θω1ω2ω3.
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assumption, the observed long-run correlation between s1 and s2 pins down the causal effect

of interest.

We now derive an expression for the KL divergence between the true and assumed dis-

tributions over (u, s). Observe that the joint density of the variables conditional on the

parameters can be factorized as

p(u, s|ω, θ) = p(u)p(s1|u, ω1, θ)p(s2|u, s1, ω2).

Thus, DKL (pS (·|ht, θt) ||pS (·|ht, θ∗)) is equal to

∫
ln
∫
p(u)p(s1|u, ω1, θ

t)p(s2|u, s1, ω2)dµ (ω1, ω2|ht)∫
p(u)p(s1|u, ω1, θ∗)p(s2|u, s1, ω2)dµ (ω1, ω2|ht)dp

(
s, u|θt

)
=
∫

ln
∫
p (s1|u, ω1, θ

t) dµ (ω1|ht)
∫
p (s2|s1, u, ω2) dµ (ω2|ht)∫

p (s1|u, ω1, θ∗) dµ (ω1|ht)
∫
p (s2|s1, u, ω2) dµ (ω2|ht)dp

(
s, u|θt

)
=
∫

ln
∫
p (s1|u, ω1, θ

t) dµ (ω1)∫
p (s1|u, ω1, θ∗) dµ (ω1)

dp
(
s1, u|θt

)
Note that the researcher’s belief over ω2 (which evolves over time) does not appear in the final

expression we have arrived at. The only aspect of µ that enters the divergence is the belief

over ω1. Because this belief is stationary, it follows that the expression for the divergence

(for any given θt) does not change over time. This means that the researcher’s propensity

to research is time-invariant: there is θ̄ such that the researcher will update her beliefs over

ω2 if and only if θt ∈ [0, θ̄]. As t→∞, the researcher’s belief is concentrated on

ω̂2 = E
[
ρ12(θ, ω)|θ < θ̄

]
.

Clearly, this long-run estimate is biased when ω1 ̸= 0, i.e., when there is a confounding effect.

4. General Analysis

This section presents results that describe properties of the learning process in general.

We begin with results about how the propensity to learn changes over time, and illustrate

these results with additional examples. These results convey the insight that as the learning

progresses and the researcher’s beliefs evolve, there is a sense in which her propensity to
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perform research cannot uniformly increase over time. We then turn to the long-run beliefs

that the learning process induces. We characterize these beliefs and show they are potentially

history-dependent.

Throughout this section, we assume that S, U and Ω are finite for expositional simplicity.

We adopt the following standard notational conventions. For a vector x and a subset of its

indices E, xE is the vector (xi)i∈E and x−E is the vector (xi)i/∈E. Similarly for an index i, x−i

denotes the vector (xj)j ̸=i. For two vectors x and y with disjoint indices, (x, y) denotes their

concatenation. Finally, we denote by P (·) the probability distribution over all variables.

4.1. Evolution of the propensity to conduct research. In the examples from Section 3,

the set of contexts for which research takes place (weakly) contracts over time. For instance,

the Contaminated Experiment example demonstrated the possibility of a uniformly decreas-

ing rate at which research takes place. Our first two results show that the opposite pattern,

namely a uniformly increasing propensity to conduct research, cannot occur. Consequently,

the rate of research decreases at least with some probability.

Proposition 1. For any θ ∈ Θ and history ht, if P
(
θ ∈ ΘR (µ (ht+1)) \ΘR (µ (ht)) |ht

)
> 0,

then there exists t∗ > t+ 1 such that P
(
θ /∈ ΘR

(
µ
(
ht∗
))
|ht+1

)
> 0 .

This result states that any expansion in the set of parameters for which research is con-

ducted reverses itself with positive probability. Consider a context for which research does

not takes place at some period. Suppose that there is some piece of evidence that would lead

to research being performed for that same context in the following period. The result shows

that with positive probability, there is a point in the future at which the research would once

again not be conducted in that same context.

When the contexts map naturally to the KL divergence, we can be more explicit about

how the propensity to research evolves.

Proposition 2. Suppose DKL (pS,U (·|θ, ht) ||pS,U (·|θ∗, ht)) is quasi-convex in θ for every

history ht. If

P
(
ΘR

(
µ
(
ht+1

))
\ΘR

(
µ
(
ht
))
̸= ∅|ht

)
> 0,
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then

P
(
ΘR

(
µ
(
ht
))
\ΘR

(
µ
(
ht+1

))
̸= ∅|ht

)
> 0.

This result says that when there are contexts for which research takes place at period

t+ 1 but not at t (ΘR (µ (ht+1)) \ΘR (µ (ht)) ̸= ∅), then with positive probability, there are

contexts for which research takes place at t but not at t+ 1 (ΘR (µ (ht))\ΘR (µ (ht+1)) ̸= ∅).

That is, when the community conducts research in new contexts with positive probability,

it also stops conducting research in others.

The result relies on the assumption that the KL divergence is quasi-convex in θ. In

particular, this holds when a larger Euclidean distance between θ and θ∗ implies a larger

divergence. In our examples, θ ∈ R+, θ∗ = 0, and the divergence strictly increases in θ.

Consequently, Proposition 2 applies to all of our examples.

The proofs of Propositions 1 and 2 rely on convexity of relative entropy. This implies that

relative entropy increases on average. Therefore, the divergence between pS,U(·|θ, ht) and

pS,U(·|θ∗, ht) rises in expectation for every θ. If it decreases for some histories, then it must

rise for others. Both proofs exploit this insight to show that expansions in ΘR must be offset

by contractions in it.

In the Causal Inference example, the set of contexts for which research takes place is

history-independent. Our next result provides a general sufficient condition for this property.

We state the sufficient condition using language from the literature on graphical probabilistic

models. (See Pearl (2009) or Koller and Friedman (2009) for a general introduction, and

Spiegler (2016, 2020) or Ellis and Thysen (2024) for earlier economic-theory applications.)

A directed acyclic graph (DAG) consists of a set of nodes N representing variables and a set

R of directed links between nodes, such that the graph contains no cycle of directed links.

We say that a data-generating process is recursive if it is described by a recursive system

of structural equations, where the equations for the parameters and latent variables are de-

generate (i.e., their R.H.S. includes no variable or parameter). A recursive data-generating

process corresponds to an underlying DAG, where all the parameters and unobserved vari-

ables are represented by ancestral nodes, and there is an edge into si from each parameter or

variable in the R.H.S. of the equation that defines si. All of our examples assume a recursive
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data-generating process. For instance, in the Causal Inference example, the underlying DAG

is
θ → s1 ← ω1

↗ ↓

u → s2 ← ω2

.

Following Spiegler (2016), let R(i) denote the set of node i’s “parents,” i.e., the set of

nodes that send directed links into i. Say that a joint distribution p with full support over

a product set X = ×i∈NXi is consistent with the DAG (N,R) if

p(x) =
∏
i∈N

p
(
xi|xR(i)

)
for every x ∈ X. A DAG G satisfies a conditional-independence property if every distribution

that is consistent with G satisfies this property. Any such conditional-independence property

has a graphical characterization known as “d-separation” (see Pearl (2009)).

We define the set of active parameters A to be the smallest set of indices for which

pS,U (·|θ∗, ω) = pS,U (·|θ∗, ω′) whenever ωA = ω′
A. This means that under the identifying

assumption, all other fixed parameters do not affect the long-run distribution of s, and

therefore repeated observation can teach the researcher nothing about them. In the Causal

Inference example, the set of active parameters was {2}. The set of active parameters is

defined with respect to θ∗. It is not purely determined by the DAG structure underlying

p, because it depends on the value of θ∗. Note also that by the definition of identifying

assumptions, Q ⊆ A.

Say that θ and ωA are G-separable if for every i, G satisfies si ⊥ ωA whenever it satisfies

si ̸⊥ θ|(s−i, u). If θ and ωA are G-separable, then any statistic that is affected by the context

(conditional on the other statistics and the latent variables) is not affected by the answer to

the question (nor by the value of other active parameters). As we show in the proof of the

next results, this property implies that ωQ ⊥ θ|(s, u), i.e., the fixed parameters of interest

and the context parameters are independent conditional on the variables. This in turn im-

plies that the parameters of interest and the context directly affect different sets of statistics.
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The Contaminated Experiment example violates this condition, since the context parame-

ter and the fixed parameter of interest directly cause the only statistic. In contrast, the

Causal Inference example satisfies the condition: the context parameter (which determines

the strength of the confounding effect) has a direct effect only s1, while the fixed parameter

of interest (which measures the causal effect of s1 on s2) has a direct effect only on s2.

Proposition 3. Suppose that the data-generating process is recursive with an underlying

DAG G. If θ and ωA are G-separable, then ΘR (·) is constant.

Under G-separability, the set of contexts for which the researcher conducts research does

not change over time, i.e., there is a constant propensity to research. The proof uses the

DAG tool of d-separation to factorize belief into conditional-probability terms. Using this

factorization, we show that every statistic whose distribution is changed by the identifying

assumption must be conditionally independent of the active parameters. This in turn implies

that every term involving ωA cancels out or gets integrated out in the expression for the KL

divergence. Since the researcher only learns about ωA under the identifying assumption, the

KL divergence for any given context remains fixed over time.

Note that the conditional-independence property that underlies Proposition 3 is not im-

posed directly on the researcher’s belief. Instead, it holds for the system of recursive equa-

tions that generate the belief. It is thus “robust” in the sense that it does not depend on the

specific distributions of the underlying variables, but only on their underlying qualitative

relationships.

4.1.1. An Example: Instrumental-variable causal identification. The DAG language allows

a convenient analysis of whether the propensity to adopt identification strategies for causal

inference changes over time. Consider a data-generating process described by the following

system of recursive equations:

s1 = ω1θu+ ε1

s2 = ω2s1 + ω3u+ ε2

s3 = ω4s2 + ω5u+ ε3
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where u and the ε variables are all independent Gaussians. Set their variances and the range

of possible values of the parameters such that si ∼ N(0, 1) for every i = 1, 2, 3. Suppose

that the researcher wants to learn ω4, the causal effect of s2 on s3. Formally, Q = {4}. This

relationship is obfuscated by the unknown effect of u on s1, s2, and s3. Since the statistic

variables are all standard normal, the only aspects of the long-run distribution of s that the

researcher can use to learn ω are E(s1s2), E(s2s3) and E(s1s3). This gives three equations

with five unknowns, and therefore ω4 cannot be identified. However, when we make the

assumption θ∗ = 0, we get ω4 = E(s1s3)/E(s1s2), which is the textbook 2SLS procedure.

The identification strategy uses s1 as an instrument for s2. The identifying assumption is

that the instrument is independent of the confounding variable u.

Let us apply Proposition 3 to this example. The DAG structure of the system is

θ u ω5

↘ ↙ ↓ ↘ ↓

ω1 → s1 → s2 → s3

↗ ↑ ↑

ω2 ω3 ω4

The active parameters are ω2, ω3, ω4 and ω5, i.e., A = {2, 3, 4, 5}. Observe that s1 is not

independent of θ conditional on the other variables (because there is a direct link between the

two nodes). However, s1 is independent of ωA since they have no common ancestor. Using

d-separation, we can show that the other two statistics, s2 and s3, are both independent of θ

given s1 and u. By Proposition 3, the researcher’s propensity to employ the IV identification

strategy is time-invariant.4

4.2. Long-run beliefs. Finally, we turn to the question of what the community believes

about the state. We begin with a definition of stable beliefs.

Definition 1. A belief µ∗ is stable for ω∗ if P (limt→∞ ||µ (ht)− µ∗|| = 0|ω∗) > 0.

4In a previous version of the paper (Ellis and Spiegler (2024)), we examined another causal-inference iden-
tification strategy, known as “front door identification” (see Pearl (2009)), and showed that it violates the
condition for time-invariant propensity to learn.
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A belief is stable when the posterior beliefs generated by the learning process converge to

it with positive probability in the long run. Similar definitions appear in, e.g., Fudenberg

and Kreps (1993) and Esponda and Pouzo (2016). The following result characterizes stable

beliefs.

Proposition 4. For a parameter ω∗, if µ∗ is stable for ω∗ and ΘR(·) is continuous in a

neighborhood of µ∗, then

µ∗
(

arg min
ω∈Ω

DKL

(
pS

(
·|θ ∈ ΘR (µ∗) , ω∗

)
||pS (·|θ∗, ω)

))
= 1.

To understand this result, recall that observed statistics are affected by the contexts

in which research is conducted and by the actual state ω∗. If the researcher consistently

holds the belief µ∗ for a long stretch of time, this means that the set of values of θ for

which research takes place during that stretch is ΘR (µ∗), and the long-run frequency of the

statistic is p
(
s|θ ∈ ΘR(µ∗), ω∗

)
. However, the researcher updates his belief according to the

identifying assumption that the context parameter is θ∗. Under that assumption, the statistic

s is realized with probability p (s|θ∗, ω) in state ω. Following Berk (1966) and Esponda and

Pouzo (2016), the long-run belief that emerges from this misspecified Bayesian learning

assigns probability one to states that minimize the KL divergence of the true distribution

from the subjective one. A belief µ∗ is stable if it only attaches positive probability to the

states that minimize this divergence.

We should not confuse the KL divergence in the result with the role of the divergence in

researchers’ decision whether to conduct research. In the latter case, the divergence plays

a similar role to a utility function that captures the researcher’s preferences and dictates

her actions at each period. In the former case, it is a statistical property of the long-run

empirical frequency of the observable variables.

Proposition 4 does not establish whether a stable belief exists, whether it is unique, and

whether the process does indeed converge when there is a unique stable belief. As is often

the case in the literature on misspecified learning, these are difficult questions, which we do

not address here. The following example illustrates the possibility of multiple stable beliefs.
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4.2.1. An Example: Contaminated experiments, revisited. This is a variant on the example

from Section 3.1. The main difference is that the statistic s is now a binary variable that

gets values in {0, 1}. As before, there are two fixed parameters, ω1 and ω2, and a single

context parameter θ. Both fixed parameters take values in [ε, 1 − ε] ⊂ (0, 1). There are no

latent variables. The conditional distribution of s is given by

p(s = 1 | ω, θ) = (1− θ)ω1 + θω2

The researcher wants to learn ω1, i.e., Q = {1}. As in the original example, the only feasible

identifying assumption is θ∗ = 0. As before, this assumption prevents learning anything

about ω2.

Let µ̄t
1 denote the mean of ω1 according to the belief µ (·|ht). Let µ̄2 denote the mean of ω2

according to the time-invariant belief µ2. Denote qt = (1− θt)µ̄t
1 + θtµ̄2. The KL divergence

that determines whether research is conducted at period t is

DKL

(
pS(·|θt, ht)||pS(·|θ∗, ht)

)
= qt ln qt

µ̄t
1

+
(
1− qt

)
ln 1− qt

1− µ̄t
1
,

a function of only θ and µ̄t
1. The derivative of this expression with respect to θt is negative.

Therefore, ΘR (µ (ht)) is an interval [0, θ̄(µ̄t
1)] where θ̄ depends only on the mean of ω1. The

divergence DKL(·) is not constant in µ̄t
1, and since µ̄t

1 can move back and forth in the range

[ε, 1 − ε], there will be phases of both accelerating and decelerating rates of research. This

is in contrast to the uniform research slowdown that emerged in the original contaminated-

experiment example, where the statistic was Gaussian.

By definition, both µ̄t
1 and µ̄2 are restricted to [ε, 1 − ε]. Therefore, whatever the re-

searcher’s beliefs, the KL divergence is finite, and consequently θ̄(µ̄t
1) is bounded away from

zero. As a result, the probability that research is carried out is positive after every history.

This means that the researcher will obtain infinitely many observations of s. Under the

identifying assumption, st = 1 with independent probability ω1 at every t. Therefore, the

researcher identifies the long-run frequency of st = 1 with ω. Any candidate for a stable

belief given the true ω is a degenerate distribution that assigns probability one to some ω∗
1
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(abusing notation, use ω∗
1 to represent this belief), which satisfies the equation

ω∗
1 = E[θ|θ < θ̄(ω∗

1)] · (ω2 − ω1) + ω1. (2)

We can find parameters for which Equation (2) has multiple solutions, and thus there are

multiple candidates for stable beliefs. Suppose ω1 + ω2 = 1; µ̄2 = 1
2 ; and the distribution

over θ is smooth with full support on [0, 1] and mean 1
2 . Under this specification, ω∗

1 = 1
2 is

a solution to Eq. (2). To see why, note that when ω∗
1 = 1

2 , we have q = µ̄1 for any θ. This

means that DKL(·) = 0 for all θ ∈ [0, 1], hence θ̄
(

1
2

)
= 1. The R.H.S. of Eq. (2) becomes

E [θ] (ω2 − ω1) + ω1 = 1
2(1− 2ω1) + ω1 = 1

2 ,

which coincides with the equation’s L.H.S.

We now show Equation (2) has a second solution that lies strictly above 1
2 . Since E [θ] = 1

2 ,

we have

1− ε > E[θ|θ < θ̄(1− ε)] · (ω2 − ω1) + ω1

for every ω1, ω2 ∈ [ε, 1−ε]. That is, the R.H.S. of Eq. (2) lies below the L.H.S. as ω∗
1 → 1−ε.

Pick any ω∗∗
1 ∈ (1

2 , 1− ε), and let θ2 ∈ (0, 1) satisfy

ω∗∗
1 < E [θ|θ < θ2] · (2ε− 1) + 1− ε.

We can always find such θ2, since E [θ|θ < θ2] continuously decreases with θ2 and converges

to zero as θ2→ 0. Now select K to satisfy

K =
[

1
2 + (1− θ2)

(
ω∗∗

1 − 1
2

)]
ln

1
2 +(1−θ2)(ω∗∗

1 − 1
2)

ω∗∗
1

+
[

1
2 − (1− θ2)

(
ω∗∗

1 − 1
2

)]
ln

1
2 −(1−θ2)(ω∗∗

1 − 1
2)

1−ω∗∗
1

.

The R.H.S. of this equation is the value of the KL divergence given θ2 and ω∗∗
1 . It follows

that θ̄(ω∗∗
1 ) = θ2. We have thus established that when ω1 = 1− ε and ω2 = ε, the R.H.S. of

Eq. (2) lies above the L.H.S. at ω∗∗
1 . Since we established the opposite ranking at ω∗

1 = 1−ε,

there must be a solution ω∗
1 = ω̄1 ∈ (ω∗∗

1 , 1− ε) to Eq. (2) by continuity of both sides. Thus,
1
2 and ω̄1 are both steady states.
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Both solutions to Equation (2) that we have constructed are attractors of the dynamic

process. For a mean belief x that is sufficiently close to either solution, there are fewer

(more) “success” realizations s = 1 than expected when x is above (below) the fixed point.

For ω∗
1 = ω̄1, this follows from there being too few successes at 1− ε and too many successes

at ω∗∗
1 . For ω∗

1 = 1
2 , this follows because θ̄ (x) = 1 for all x sufficiently close to 1

2 , and so

the number of successes is locally constant in x. Consequently, when a belief is near one of

these two fixed points, it tends to drift toward it.

5. An Extension: Multiple/“Structural” Assumptions

Our model is restrictive in several respects. First, it assumes a single feasible identifying

assumption, rather than a set of identification strategies the researcher could choose from.

Second, it assumes the researcher has a single question, rather than a set of nested ques-

tions (such that she can choose between answering an ambitious question using a strong

assumption or a modest question using a weak assumption).5 Third, it focuses entirely on

contextual assumptions rather than more “structural” assumptions about the fixed param-

eters. In this section we present two examples that go beyond these restrictions and offer

stylized representations of familiar identification methods in empirical economics.

5.1. Learning by “Calibration”. Suppose that the statistic follows the process

st = (ω1 + ω2) + εt

where εt ∼ N (0, 1). The researcher wants to learn both ω1 and ω2 , i.e., Q = {ω1, ω2}. There

are no context parameters in this specification, hence our notion of identifying assumptions

in the basic model is moot. Clearly, the researcher cannot identify both fixed parameters

from observations of s. However, the researcher can settle for identification of one of the

fixed parameters, by imposing an assumption about the value of the other fixed parameter.

This is an example of an identification strategy which does not aim at a complete answer to

the research question and settles for a partial answer instead.

5For a systematic discussion of the similar dilemma between “point” and “partial” identification, see Manski
(2007).
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Formally, assume that at every period, the researcher can assume ω2 = ω∗
2 or ω1 =

ω∗
1, where ω∗

2 and ω∗
1 can take any value. When the researcher assumes ωi = ω∗

i , she

interprets all the variation in st as a consequence of ω−i and the sampling error εt. When the

researcher assumes ωi = ω∗
i , she updates only her belief about ω−i. The researcher selects the

assumption that minimizes the KL divergence (relative to the true data-generating process,

given her current beliefs), and performs the research only if this minimal divergence does

not exceed K > 0.

This learning process is a metaphor for the “calibration” method employed by quantita-

tive macroeconomists. In this field, it is customary to confront a multi-parameter model

with observational data lacking the richness that enables full identification of the model’s

parameters. Macroeconomists then proceed by assigning values to some of the parameters

in order to identify the remaining parameters from the data.

We examine the learning dynamics that this procedure induces. Suppose that entering pe-

riod t, the researcher’s believes that ωi ∼ N (mt
i, (σt

i)2), independently across the components

of ω. Then,

2DKL

(
pS(·|ht)||pS(·|ht, ωi = ω∗

i )
)

= ((σt
1)2 + (σt

2)2) + (mt
i − ω∗

i )2

(σt
−i)2 − ln

(
(σt

1)2 + (σt
2)2

(σt
−i)2

)
− 1.

The divergence minimizing value of ω∗
i is ω∗

i = mt
i, and then

2DKL

(
pS(·|ht)||pS(·|ht, ωi = mt

i)
)

= (σt
i)2

(σt
−i)2 − ln

(
1 + (σt

i)2

(σt
−i)2

)
.

The researcher effectively chooses between setting ω1 = mt
1 and setting ω2 = mt

2. The former

induces a lower divergence than the latter if and only if σt
1 < σt

2. Therefore, the researcher

will assume there is no uncertainty about the parameter she is more certain about. This again

brings to mind the “calibration” methodology: The researcher “calibrates” the parameter

she is more confident about, using her best estimate of this parameter.

We assume that K is large enough such that learning always take place, and that, w.l.o.g,

σ1
1 ≥ σ1

2. At t = 1, the researcher assumes ω2 = m1
2, and then updates her belief about ω1.

Because the researcher’s belief about each parameter is given by an independent Gaussian

distribution, each update about ωi shrinks σi by a deterministic percentage. After updating
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about ω1 for some number k of periods, the variance of σt+k
1 will fall below that of σt+k

2 . At

that point, the researcher switches to the other assumption, namely ω1 = mt+k
1 and proceeds

to update about ω2. She then repeats, alternating between updating about ω1 and ω2.

The next result addresses long-run beliefs. For convenience, we assume that initial vari-

ances are identical. Then, w.l.o.g, in odd periods, the researcher will set ω1 = mt
1 and update

her beliefs about ω2, and in even periods, she will set ω2 = mt
2 and update her beliefs about

ω1.

Proposition 5. As t → ∞, σt
i → 0 almost surely for each i. Conditional on the realized

value of (ω1, ω2), mt
1 + mt

2 → ω1 + ω2 with probability one, and there exists v > 0 such that

mt
i is normally distributed with variance greater than v for all t.

In the long run, the researcher correctly learns the sum of the two fixed parameters. She

also becomes perfectly confident of her estimates of the individual parameters. However,

these estimates are in fact noisy, and incorrect with probability one. The learning process

also exhibits order effects. Early observations effectively get more weight than late ones, and

they have a non-vanishing contribution to the limit belief.

5.2. A “Heckman” Selection Model. In this example, there are three statistic variables,

s1, s2 and s3, where s1, s2 ∈ {0, 1} and s3 ∈ R. The statistic s1 indicates whether an agent

enters some market (s1 = 1 means entry). The statistic s3 represents the agent’s income.

The statistic s2 is an exogenous variable that may affect both the entry decision and the

income conditional on entry. Data about income is available only for agents who enter the

market.

This is a classic problem of drawing causal inferences from a selective sample. To deal with

it, our researcher has two feasible identification strategies. First, she can make a contextual

assumption that market entry is purely random, thus assuming away selective entry. Second,

she can make a assumption about fixed parameters in the manner of “Heckman correction”

(Heckman, 1979). We explore the trade-off between the two methods and how it affects

research dynamics.
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Formally, the true data-generating process is given by the following equations. First, s2 is

uniformly distributed over {0, 1}. Second,

s1 =


I+ (s2 + u) with probability θ

I+ (s2 + ε1) with probability 1− θ

Finally, given s1 = 1 and each s2 = 0, 1,

s3 = ω1 + ω2s2 + ω3E [u|s1 = 1, s2, θ] + ε2

where u, ε1 and ε2 are all independent normal variables with mean zero, and where the

variances of u and ε1 are the same. The statistic s3 is not measured when s1 = 0. The

context parameter θ ∈ [0, 1] indicates the probability that an agent’s assignment into the

market is based on the agents’ latent characteristics. Thus, θ = 0 means purely random,

non-selective assignment.

There are three fixed parameters in this specification, all of which enter the equation

for s3. These parameters represent the causal effects of three factors on agents’ income:

market entry itself (ω1), the exogenous variable s2 (ω2), and the latent variable u (ω3). The

researcher is interested in learning ω1, i.e., Q = {1}. Long-run observation of s3 for each

s2 provides two equations with three unknowns, hence ω1 cannot be identified unless the

researcher imposes an assumption. Parameterize beliefs µ so that ωi ∼ N (mi, σ
2
i ).

There are two feasible identifying assumptions. One assumption is θ∗ = 0, i.e., market

entry is independent of u. Under this contextual assumption, E [u|s1 = 1, s2] = 0 for every

s2, such that the long-run average of s3 given s1 = 1 and s2 is equal to ω1 + ω2s2. This

gives two equations with two unknowns, which enables the researcher to pin down ω1. An

alternative assumption is ω∗
2 = 0. This is an assumption about fixed parameters, which

means that the exogenous variables that may affect market entry do not have a direct causal

effect on income conditional on entry. It is an “exclusion” restriction that turns s2 into a

valid instrument for estimating ω1, albeit with different parameterization than in the IV

example we examined in Section 4.
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The second identification method is based on Heckman’s correction method (Heckman,

1979). For the sake of tractability, we simplified the model by admitting no fixed parameters

into the distribution of s1 conditional on s2. This enables us to treat E [u|s1 = 1, s2] as

a known quantity, whereas in practice it would be an estimated one. Our example thus

trivializes the first stage of Heckman’s procedure, and focuses on the second stage.

At any given period, the researcher selects the KL divergence minimizing assumption

(θ∗ = 0 or ω∗
2 = 0), as long as this divergence does not exceed the constant K. The following

result characterizes the researcher’s selection strategy.

Proposition 6. For almost every history ht, there exist thresholds 0 < θ̄RD (µ (ht)) ≤

θ̄S (µ (ht)) ≤ 1 such that the researcher assumes θ∗ = 0 when θt ∈
[
0, θ̄RD (µ (ht))

)
; as-

sumes ω∗
2 = 0 when θt ∈

(
θ̄S (µ (ht)) , 1

)
; and passes when θt ∈

(
θ̄RD (µ (ht)) , θ̄S (µ (ht))

)
.

The thresholds θ̄RD (µ (ht)) and θ̄S (µ (ht)) increase in
(
Eµ(ht)(ω2)

)2
and V arµ(ht)(ω2), and

decrease in
(
Eµ(ht)(ω3)

)2
. If K is large enough, then θ̄RD (µ (ht)) = θ̄S (µ (ht)).

Thus, when market entry exhibits little selection (i.e., θ is small), the researcher employs

the contextual assumption θ∗ = 0. In contrast, when entry is highly selective, the researcher

passes or imposes the assumption ω∗
2 = 0. Her willingness to impose the latter assumption

increases with its perceived accuracy (i.e., as E(ω2) gets closer to zero) and with her confi-

dence of her estimate — i.e., as the variance of her belief over ω2 goes down. Finally, the

researcher is less likely to employ the contextual assumption when she believes that selective

entry has a large effect on income (i.e., when E(ω3) is far from zero).

This characterization can lead to self-reinforcing learning dynamics. The researcher never

updates her beliefs about ω3 when she assumes θ∗ = 0. Likewise, she never updates her

beliefs about ω2 when she assumes ω∗
2 = 0. When she is confident that ω2 is close to zero,

she usually assumes ω∗
2 = 0 and rarely updates her belief over ω2. Therefore, if this belief

is inaccurate, it will take a long time to correct it. Moreover, when the researcher assumes

ω∗
2 = 0, she misattributes part of the actual effect of ω2 on income to ω3. Depending on

the true values of these parameters, this misattribution can make the researcher even less

likely to employs the contextual assumption. Similarly, if the researcher is confident that ω3

is low, she tends to assume θ∗ = 0. This leads her to misattribute part of the actual effect
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of ω3 on income to ω2, which may further strengthen her tendency to employ the contextual

assumption. Thus, the researcher’s predilection to stick to a particular identifying strategy

for a long stretch of time is history-dependent.

6. Conclusion

The ethos of scientific inquiry involves the pursuit of evidence-based consensus answers

to research questions. However, empirical observations are often open to multiple inter-

pretations. Research communities employ assumptions in order to extract an unequivocal

interpretation of data, such that repeated observations will lead to a consensus among re-

searchers, regardless of their subjective prior beliefs. Assumptions are rarely undisputed.

However, researchers are willing to make them if they find them plausible enough. This

paper articulated this process of assumption-based learning and explored how it affects the

rate of learning and the long-run beliefs it may induce.

The pursuit of clear-cut answers to questions is not particular to scientific researchers:

Ordinary people seek them in their everyday decisions. From this point of view, our learning

model also sheds light on how individual decision-makers learn from observations. It departs

from the model of Bayesian learning under misspecified prior beliefs in two respects. First,

it assumes that agents learn only when they can draw clear-cut conclusions from the data.

Second, the misspecified beliefs are endogenous, resulting from assumptions that agents make

in order to be make clear-cut inferences.

Appendix A. Proofs

For the proofs of Propositions 1, 2, and 4, we economize on notation by taking a history

ht and writing (ht, s) for the history that concatenates ht with the tuple (st = s, at = 1, θt)

for arbitrary θt ∈ ΘR(µ(ht)) (similarly for (ht, s, s′, s′′, ...)).

A.1. Proof of Proposition 1. Fix a history ht+1 and θ so that θ ∈ ΘR (µ (ht+1)) \

ΘR (µ (ht)). Adopt the sup metric throughout. To economize on notation, write (hτ , s)

for some continuation history of hτ with sτ = s, aτ = 1, and some θτ ∈ ΘR (µ (hτ )), and

similarly for longer continuation histories.
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Since the researcher always updates her beliefs as if θ = θ∗, for any θ ∈ Θ we have

pS,U (·|θ, (hτ , s)) =
∑
ω

pS,U (·|θ, ω)µ (hτ ) (ω) p (s|θ∗, ω)
p (s|θ∗, hτ )

and thus

∑
s∈S

pS,U (·|θ, (hτ , s)) p (s|θ∗, hτ ) =
∑
s∈S

∑
ω

pS,U (·|θ, ω)µ (hτ ) (ω) p (s|θ∗, ω)

=
∑
ω

pS,U (·|θ, ω)µ (hτ ) (ω) = pS,U (·|θ, hτ ) .

This implies that for any history hτ , DKL (pS,U (·|θ, hτ ) ||pS,U (·|θ∗, hτ )) is bounded above by

∑
sτ

DKL (pS,U (·|θ, (hτ , sτ )) ||pS,U (·|θ∗, (hτ , sτ ))) pS (sτ |θ∗, hτ ) ,

by convexity of relative entropy (Theorem 2.7.2 of Cover and Thomas (2006)). In particular,

if

δ ≤ DKL

(
pS,U

(
·|θ, h̃τ

)
||pS,U

(
·|θ∗, h̃τ

))
for some δ and history h̃τ , then there exists s′ ∈ S such that

δ ≤ DKL

(
pS,U

(
·|θ,

(
h̃τ , s′

))
||pS,U

(
·|θ∗,

(
h̃τ , s′

)))
.

By assumption,

DKL

(
p
(
·|θ,

(
ht, s∗

))
||p
(
·|θ∗,

(
ht, s∗

)))
≤ K + ϵ < DKL

(
p
(
·|θ, ht

)
||p
(
·|θ∗, ht

))
for some ϵ > 0, so there exists st, st+1, . . . so that

K + ϵ < DKL

(
p
(
·|θ,

(
ht, st, st+1, . . . , st+m

))
||p
(
·|θ∗,

(
ht, st, st+1, . . . , st+m

)))
for every m ≥ 1.

For large m, p (·|θ, (ht, st, st+1, . . . , st+m, s∗)) and p (·|θ∗, (ht, st, st+1, . . . , st+m, s∗)) are arbi-

trarily close to p (·|θ, (ht, st, . . . , st+m)) and p (·|θ∗, (ht, st, . . . , st+m)). Note that DKL(p||q) is

continuous in both p and q. Moreover, both are invariant to permutations of st+i. Therefore,
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for sufficiently large m,

DKL

(
p
(
·|θ,

(
ht, s∗, st, st+1, . . . , st+m

))
||p
(
·|θ∗,

(
ht, s∗, st, st+1, . . . , st+m

)))
> K,

that is, θ /∈ ΘR (µ (ht, s∗, st, st+1, . . . , st+m)). Let H be the set of continuation histories of

ht with observed variables equal to (s∗, st, st+1, . . . , st+m), actions aτ = 1 for τ ≥ t, and

contexts θt ∈ ΘR (µ (ht)), θt+1 ∈ ΘR (µ (ht, s∗)), and θτ ∈ ΘR (µ (ht, s∗, st, . . . , sτ−1)) for

t+m ≥ τ > t+ 1,

P
(
θ /∈ ΘR

(
µ
(
ht+m+1

))
|ht
)
> P

(
H|ht

)
> 0.

A.2. Proof of Proposition 2. As above, write (hτ , s) for some continuation history with

sτ = s, aτ = 1, and some θτ ∈ ΘR (µ (hτ )). Fix any ht and s so that ΘR (µ (ht, s)) \

ΘR (µ (ht)) ̸= ∅. Pick θ1 ∈ ΘR (µ (ht, s)) \ΘR (µ (ht)) so

DKL

(
p
(
·|θ1, ht

)
||p
(
·|θ∗, ht

))
> K > DKL

(
p
(
·|θ1,

(
ht, s

))
||p
(
·|θ∗,

(
ht, s

)))
= ∆.

By continuity, there exists θ = βθ1 + (1− β)θ∗ so that

DKL

(
p
(
·|θ, ht

)
||p
(
·|θ∗, ht

))
= K,

and so θ ∈ ΘR (µ(ht)). By quasi-convexity, DKL (p (·|θ, (ht, s)) ||p (·|θ∗, (ht, s))) < K. By

convexity of relative entropy (Theorem 2.7.2 of Cover and Thomas (2006)),

K = DKL

(
p
(
·|θ, ht

)
||p
(
·|θ∗, ht

))
≤
∑
S

DKL

(
p
(
·|θ,

(
ht, s̃

))
||p
(
·|θ∗,

(
ht, s̃

)))
pS(s̃|θ∗, ht)

<
∑
s̃ ̸=s

DKL

(
p
(
·|θ,

(
ht, s̃

))
||p
(
·|θ∗,

(
ht, s̃

)))
pS(s̃|θ∗, ht) + ∆pS(s|θ∗, ht)

Therefore, DKL (p (·|θ, (ht, s′)) ||p (·|θ∗, (ht, s′))) > K for some s′ ∈ S\{s}. This also holds for

all θ′ sufficiently close to θ, including some of those for which DKL (p (·|θ′, ht) ||p (·|θ∗, ht)) <

K. Therefore, ΘR (µ (ht))\ΘR (µ (ht+1)) ̸= ∅ with probability of at least p
(
s′,ΘR (µ (ht)) |ω

)
given state ω and history ht.
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A.3. Proof of Proposition 3. Let p be consistent with a DAG G as in the statement of

the Theorem. We introduce a few pieces of DAG-based notation. First, let Nω be the set

of nodes that represent the fixed parameters. In the same manner, define Nu, N s and N θ.

Second, for any subset of graph nodes M ⊆ N , we use the shorthand notation ωM for ωM∩Nω .

In the same manner, define uA, sM and θM . The proof proceeds step-wise.

Step 1: The researcher never learns anything about ω−A.

Proof. By definition of A,

p(s|θ∗, ωA, ω−A) = p(s|θ∗, ωA)

for almost every s. Because ωA ⊥ ω−A,

p(ω−A|s, θ∗) = p(ω−A)∑ωA
p(s|θ∗, ωA, ω−A)p(ωA)∑

ω p(s|θ∗, ωA, ω−A)p(ωA)p(ω−A)

= p(ω−A)∑ωA
p(s|θ∗, ωA)p(ωA)∑

ω p(s|θ∗, ωA)p(ωA)p(ω−A) = p(ω−A),

for almost every s. Therefore, beliefs about ω−A are almost always history-independent. □

In preparation for the next step, define a subset I ⊆ Nω consisting of all the parameters

that are not independent of θ conditional on (s, u) in the following recursive manner. First,

I0 is the set of nodes i ∈ Nω for which there exist j ∈ N θ and k ∈ N s such that i, j ∈ R(k).

For every integer n > 0, In is the set of nodes i ∈ Nω for which there exist j ∈ In−1 and

k ∈ N s such that i, j ∈ R(k). Define I = ∪n≥0In. Let N I be the nodes in N s with a parent

in I. By construction, j ∈ N I implies that R(j) ∩ Nω ⊂ I, whereas j /∈ N I implies that

R(j) ∩ I = ∅.

Step 2: I ∩ A = ∅.

Proof. For contradiction, suppose that ωi ∈ I ∩ A. Then, there is a sequence ωi1 , . . . , ωin of

structural-parameter nodes and a sequence si1 , . . . , sin of statistics nodes, such that: ωi = ωi1 ;

every node sik along the sequence (k = 1, ..., n − 1) is a child of ωik and ωik+1 ; and sin is a
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child of a node in N θ. The following diagram illustrates this configuration for n = 3.

ωi1 ωi2 ωi3 θ

↓ ↙ ↓ ↙ ↓ ↙

si1 si2 si3

We show that G does not satisfy the conditional-independence property si1 ⊥ θ| (s−i1 , u).

By a basic result in the Bayesian-network literature (e.g., Koller and Friedman (2009)),

this property has a simple graphical characterization, known as d-separation. Perform the

following two-step procedure.6 First, take every triple of nodes i, j, k such that i, j ∈ R(k)

whereas i and j are unlinked. Modify the DAG by connecting i and j. Second, remove the

directionality of all links in the modified graph, such that it becomes a non-directed graph.

In this so-called “moral graph” induced by G, check whether every path between si1 and

a node in N θ is blocked by a node in N s ∪ Nu. This is not the case, by construction, as

the moral graph contains a path from si1 to θ that goes through the nodes ωi1 , . . . , ωin . For

illustration, note that procedure generates the following moral graph from the DAG above:

ωi1 − ωi2 − ωi3 − θ

| / | / | /

si1 si2 si3

It follows that si1 ̸⊥ θ| (s−i1 , u). By hypothesis, this implies si1 ⊥ ωA, and hence si1 ⊥ ωi

(because ωi is in A). Since si1 is a child of ωi, this property is violated, a contradiction.

Therefore, we conclude that I and A are disjoint. □

Step 3: For every s, u, the likelihood ratio p(s,u|θt,ht)
p(s,u|θ∗,ht) is history-independent.

Proof. For every j ∈ N s, we use (s, u, ω, θ)R(j) to denote the values of the variables and

parameters that are represented by the nodes in R(j). Then, p(s, u|θt, ht) = p(u)p(s|θt, ht, u)

and we can write p(s|θt, ht, u) equals

6In general, there is a preliminary step, in which all nodes that appear below the nodes that represent
ωi, θ, s, u are removed. Since there are no such nodes in G, this step is vacuous.
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∫ ∏
j∈Ns

p
(
sj|
(
s, u, ω, θt

)
R(j)

)
dµ(ω|ht)

=
∫ ∫ ∏

j∈NI

p
(
sj|
(
s, u, ω, θt

)
R(j)

) ∏
j /∈NI

p
(
sj|
(
s, u, ω, θt

)
R(j)

)
dµ(ω−I |ht)dµ(ωI |ht)

=
∫ ∏

j∈NI

p
(
sj|
(
s, u, ωI , θ

t
)

R(j)

)
dµ(ωI |ht)

∫ ∏
j /∈NI

p
(
sj|
(
s, u, ω−I , θ

t
)

R(j)

)
dµ(ω−I |ht)


where the second equality follows from the relationship between N I and I we articulated

above.

By the definition of N I , p
(
sj| (s, u, ω, θ)R(j)

)
is constant in θ for every j /∈ N I . By Step 2,

A ∩ I = ∅. By Step 1, µ(ωI |ht) is constant in ht. It follows that we can write the likelihood

ratio as
p(s, u|θt, ht)
p(s, u|θ∗, ht) =

∫ ∏
j∈NI p

(
sj| (s, u, ωI , θ

t)R(j)

)
dµ(ωI)∫ ∏

j∈NI p
(
sj| (s, u, ωI , θ∗)R(j)

)
dµ(ωI)

because the other multiplicative terms in p(s, u|θ) cancel out. Therefore, the likelihood ratio

is history-independent. □

Step 4: Completing the proof

Proof. Let R
(
N I
)

= ⋃
j∈NI R(j). Suppose sk is represented by a node in N I . As we saw

in the proof of Step 2, sk is not independent of θ conditional on (s−k, u). By hypothesis,

sk ⊥ ωA. This means that sk cannot be a descendant of any node in ωA according to G.

It follows that the parents of sk also cannot be descendants of nodes in ωA. Therefore, for

every sj node in N I ∪ R
(
N I
)
, p

(
sj| (s, u, ω, θt)R(j)

)
is constant in ωA, and so by Step 1,

p
(
sNI∪R(NI)|ht, θt

)
= p

(
sNI∪R(NI)|θt

)
for every history ht.

Note that DKL(pS,U(·|ht, θt)||pS,U(·|ht, θ∗)) equals

∑
(s,u)

p(u)p(s|ht, θt, u) ln p(s, u|θ
t, ht)

p(s, u|θ∗, ht)

=
∑
(s,u)

p(u)p(s|ht, θt, u) ln
∫ ∏

j∈NI p
(
sj| (s, u, ω, θt)R(j)

)
dµ(ωI)∫ ∏

j∈NI p
(
sj| (s, u, ω, θ∗)R(j)

)
dµ(ωI)
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using the simplified expression for the likelihood ratio that we derived at the end of the proof

of Step 3. The only s variables it involves are those represented by nodes in N I ∪ R(N I).

Therefore, the likelihood ratio is independent of s−(NI∪R(NI)). It follows that for each u, when

we sum over the values of s−(NI∪R(NI)), their contributions to DKL are integrated out, and we

can replace p(s|ht, θt, u) with p
(
sNI∪R(NI)|θt, u

)
in the expression above. We have already

observed that the likelihood ratio is history-independent for every sNI , as is the distribution

of sNI∪R(NI). Therefore, the KL divergence simplifies into the following history-independent

expression

∑
(s,u)

p(u)p
(
sNI∪R(NI)|θt, u

)
ln
∫ ∏

j∈NI p
(
sj| (s, u, ωI , θ

t)R(j)

)
dµ(ωI)∫ ∏

j∈NI p
(
sj| (s, u, ωI , θ∗)R(j)

)
dµ(ωI)

,

completing the proof. □

A.4. Proof of Proposition 4. Denote µt+1(·) ≡ µ(·|ht+1), the researcher’s beliefs about

ω with all observations up to period t. Suppose not, so P (limt ||µt − µ∗|| = 0|ω∗) > 0 and

µ∗(w) > 0 for some w that does not minimize divergence. Pick any ŵ that does. Let H be

the set of histories for which limt |µt − µ∗| = 0. Now,

µt+1(ŵ)
µt+1(w) = µt(ŵ)

µt(w)
p(st|ŵ, θ∗)
p(st|w, θ∗)

when st occurs and θt ∈ ΘR (µ (ht)).

Therefore in the history ht = (a1, s1, θ1; a2, s2, θ2; . . . ; at−1, st−1, θt−1) we have

ln µt+1(ŵ)
µt+1(w) = ln µt(ŵ)

µt(w) + IΘR(µ(ht))(θt) ln p(s
t|ŵ, θ∗)

p(st|w, θ∗) (3)

= ln µ0(ŵ)
µ0(w) +

t∑
τ=1

IΘR(µ(hτ ))(θτ ) ln p(s
τ |ŵ, θ∗)

p(sτ |w, θ∗) .

Let

l̄ (µ) = E

[
ln p(s

t|ŵ, θ∗)
p(st|w, θ∗)IΘR(µ)(θt)|ω∗

]
=
∫

ΘR(µ)

∑
s′∈S

p (s′|θ, ω∗) ln p(s
′|ŵ, θ∗)

p(s′|w, θ∗)

 dp(θ)
Then,
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1
t

ln µt+1(ŵ)
µt+1(w) =1

t

[
ln µ0(ŵ)
µ0(w) +

t∑
τ=1

l̄ (µτ )
]

+ 1
t

t∑
τ=1

[
IΘR(µτ )(θτ ) ln p(s

τ |ŵ, θ∗)
p(sτ |w, θ∗) − l̄ (µτ )

]
.

By arguments that are substantially identical to Claim B of Esponda and Pouzo (2016),

1
t

t∑
τ=1

[
IΘR(µτ )(θτ ) ln p(s

τ |ŵ, θ∗)
p(sτ |w, θ∗) − l̄ (µτ )

]
→ 0 (4)

almost surely given ω∗ and that hτ ∈ H. It follows from P (limt ||µ(·|ht)− µ∗|| = 0|H) = 1

and continuity of ΘR(·) at µ∗ that

P
(

lim
t

∣∣∣l̄ (µt)− l̄ (µ∗)
∣∣∣ = 0|H

)
= 1.

Since ŵ minimizes divergence,

DKL

(
p(s|ΘR (µ∗) , ω∗)||p(s|θ∗, ŵ)

)
< DKL

(
p(s|ΘR (µ∗) , ω∗)||p(s|θ∗, w)

)
,

and so l̄(µ∗) > 0. Therefore,

P
(

lim
t

∣∣∣∣∣1t ln µt+1(ŵ)
µt+1(w) −

1
t

ln µ0(ŵ)
µ0(w) − l̄(µ

∗)
∣∣∣∣∣ = 0|H

)
= 1

and since l̄(µ∗) > 0, we must have 1
t

ln µt+1(ŵ)
µt+1(w) → l̄(µ∗), which requires µt+1(w) → 0 and

contradicts that µ∗(w) > 0.

A.5. Proof of Proposition 5. Under the identifying assumption that ω−i = mt
−i, beliefs

evolve so that mt+1
−i = mt

−i and

mt+1
i = mt

i + (σt
i)2

(σt
i)2 + 1

(
st −mt

1 −mt
2

)

= 1
(σt

i)2 + 1m
t
i + (σt

i)2

(σt
i)2 + 1

(
st −mt

−i

)



IDENTIFYING ASSUMPTIONS AND RESEARCH DYNAMICS 36

by the usual formula for updating a Normal distribution. Suppose that (σ0
i )2 = v for i = 1, 2,

and that K is large enough that research is conducted at t = 1. W.l.o.g, the researcher

updates her beliefs over ω1 (ω2) in odd (even) periods.

Break the time periods into blocks: block 1 corresponds to t = 1, 2; block 2 corresponds

to t = 3, 4; etc. Let s(τ, k) denote the s realization in part k of block τ . Then, the variance

after block τ is

σ2
1(τ) = σ2

2(τ) = v

1 + τv

Denote

ατ = 1 + τv

1 + (1 + τ)v
The updated means m1(τ + 1) and m2(τ + 1) at the end of block τ + 1 are given by

m1(τ + 1) = ατm1(τ) + (1− ατ )(s(τ + 1, 1)−m2(τ)) (5)

and

m2(τ + 1) = ατm2(τ) + (1− ατ )(s(τ + 1, 2)−m1(τ + 1))

= ατm2(τ) + (1− ατ )(s(τ + 1, 2)−m1(τ))− (1− ατ )2(s(τ + 1, 1)−m1(τ))−m2(τ))

= (ατ + (1− ατ )2)m2(τ) + (1− ατ )s(τ + 1, 2)− (1− ατ )2s(τ + 1, 1)− (1− ατ )ατm1(τ).

Add up the two equations for mi(τ + 1) and denote

x(τ + 1) = m1(τ + 1) +m2(τ + 1)

= α2
τx(τ) + (1− α2

τ )
[

ατ

1 + ατ

s(τ + 1, 1) + 1
1 + ατ

s(τ + 1, 2)
]
.

We first consider the distribution of x(τ + 1), then that of mi(τ).

Since x(0) is a given constant, we can write

x(1) = β1
0x(0) + β1

1s1 + β1
2s2
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with β1
1 , β

1
2 ≤ 1− α0. For τ ≥ 1, suppose that

x(τ) = βτ
0x(0) + βτ

1s1 + · · ·+ βτ
2τs2τ

with βτ
j ≤ 1− ατ−1 for each j > 0. Then,

x(τ + 1) = α2
τ (βτ

0x(0) + βτ
1s1 + · · ·+ βτ

2τs2τ ) + ατ (1− ατ )s2τ+1 + (1− ατ )s2τ+2.

For all 0 < j ≤ 2τ , when we let

βτ+1
j ≡ α2

τβ
τ
j ≤ ατβ

τ
j ≤ ατ (1− ατ−1) = 1 + τv

1 + (1 + τ)v ·
1

1 + τv
= 1− ατ ,

it follows that

x(τ + 1) = βτ+1
0 x(0) + βτ+1

1 s1 + · · ·+ βτ+1
2τ+2s2τ+2 (6)

with βτ+1
j ≤ 1− ατ for all j > 0.

By the above, x(τ)|ω ∼ N (mτ , vτ ) with

vτ ≤
2τ∑

j=1

(
βτ

j

)2
≤ 2τ [1− ατ−1]2 = 2τv2

(1 + τv)2

for all τ > 1. This upper bound tends to zero as τ →∞. Finally, notice that

βτ+1
0 =

τ∏
j=0

α2
τ =

τ∏
j=0

(1 + jv)2

(1 + (1 + j)v)2 =
(

1
1 + (τ + 1) v

)2

→ 0

as τ →∞, and that βτ+1
0 + βτ+1

1 + · · ·+ βτ+1
2τ+2 = 1. Therefore, in the τ →∞ limit, x(τ + 1)

in (6) is a convex combination of s realizations. Hence, x(τ + 1)→ E[si|ω] = ω1 + ω2.

We now turn to beliefs about ωi. Using recursive substitutions of Equation (5), we show

by induction that

mi(τ) = ki,τ
0 + (−1)i

τ∑
j=1

ki,τ
j,2s(j, 2) + (−1)i+1

τ∑
j=1

ki,τ
j,1s(j, 1) (7)

for some ki,τ
j,h ∈ [(1 − αj−1)αj−1, 1 − αj−1] for 1 ≤ j < τ , k1,τ

τ,2 = 0, k2,τ
τ,1 = ατ−1 (1− ατ−1),

and k1,τ
τ,1 = k2,τ

τ,2 = 1− ατ−1. In particular, m1(τ) is increasing in odd signals and decreasing

in even signals, and vice versa for m2(τ). If true, then non-vanishing weight gets placed on

every signal.
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Equation (7) holds with weights in appropriate bounds for m1(1) since

m1(1) = (1− α0)s1 + k1,1
0

with k1,1
0 = α0m1(0), k1,1

1,1 = (1− α0) and k1,1
1,2 = 0. Also for m2(1) since

m2(1) = (1− α0)s2 − α0(1− α0)s1 + k2,1
0

with k2,1
0 = α0m2(0), k2,1

1,1 = α0(1− α0) and k2,1
1,2 = (1− α0).

Assume that there exist weights ki,τ
j,h as claimed so that equation (7) holds for τ and

i = 1, 2. Substituting the inductive hypothesis into equation (5),

m1(τ + 1) =ατm1(τ) + (1− ατ )s(τ + 1, 1)− (1− ατ )m2(τ)

=
τ∑

j=1
[ατk

1,τ
j,1 + (1− ατ )k2,τ

j,1 ]s(j, 1) + (1− ατ )s(τ + 1, 1)

−
τ∑

j=1
[ατk

1,τ
j,2 + (1− ατ )k2,τ

j,2 ]s(j, 2) + [ατk
1,τ
0 − (1− ατ )k2,τ

0 ].

Equation (7) holds for τ + 1 and i = 1 when we let k1,τ+1
0 = ατk

1,τ
0 − (1− ατ )k2,τ

0 , k1,τ+1
τ+1,1 =

(1 − ατ ), k1,τ+1
τ+1,2 = 0, and k1,τ+1

j,h = ατk
1,τ
j,h + (1 − ατ )k2,τ

j,h for h = 1, 2 and j ≤ τ . These are

clearly within the bounds. Similarly,

m2(τ + 1) =
τ∑

j=1
[ατk

2,τ
j,2 + (1− ατ )k1,τ

j,2 ]s(j, 2) + (1− ατ ) s(τ + 1, 2)− ατ (1− ατ )s(τ + 1, 1)

−
τ∑

j=1
[ατk

2,τ
j,1 + (1− ατ )k1,τ

j,1 ]s(j, 1) + [ατk
2,τ
0 + (1− ατ )k1,τ

0 ]

so k2,τ+1
j,h can be defined in a similar way so that equation (7) holds for τ + 1 and i = 2.

Inductive arguments extend the formula to all τ .

Now, observe that mi(τ) is a normally distributed random variable. Conditional on ω1+ω2,

its variance is bounded from below by, say, (ki,τ+1
1,1 )2 ≥ ((1−α1)α1)2 > 0. It is bounded from

above by
τ−1∑
j=1

[(ki,τ
j,1)2 + (ki,τ

j,2)2] ≤ 2
∞∑

j=1
(1− αj)2 = 2

∞∑
j=1

(
v

1 + jv

)2

.

This sum converges by the integral rule.
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A.6. Proof of Proposition 6. For almost every history ht, µ (ht) is normally distributed

with variables independent. Let η denote any such beliefs with ηi the marginal on the ith

dimension. Slightly abusing notation,7

S(η, θ) = DKL (pS,U(·|η, θ)||pS,U(·|η1, η3, ω
∗
2 = 0, θ))

and

R (η, θ) = DKL (pS,U(·|η, θ)||pS,U(·|η, θ∗ = 0)) .

Denote g(x) = x− ln x− 1, noting that g′(x) > 0 when x > 1 and that g(1) = 0, and

h(x, y) = x ln
(
x

y

)
+ (1− x) ln

(
1− x
1− y

)
.

Then,

S(η, θ) =1
4

[
g

(
1 + σ2

2
σ2

1 + λ2
1θ

2σ2
3

)
+ m2

2
σ2

1 + λ2
1θ

2σ2
3

]

R(η, θ) =1
4

[
g

(
1 + λ2

1θ
2σ2

3
σ2

2 + σ2
1

)
+ λ2

1θ
2m2

3
σ2

2 + σ2
1

+ g

(
1 + λ2

0θ
2σ2

3
σ2

1

)
+ λ2

0θ
2m2

3
σ2

1

]
+DS1|S2,U(θ)

where

λi = E [u|s1 = 1, s2 = i] = ϕ(−i)
1− Φ(−i) ,

and

DS1|S2,U(θ) =
∫ 1

2ϕ(u)
(
h (θΦ(−1− u) + (1− θ)Φ(−1),Φ(−1)) + h

(
θΦ(−u) + (1− θ)1

2 ,
1
2

))
du

is the expected KL divergence of pS1(·|s2, u, θ) from pS1(·|s2, u, θ
∗ = 0). This follows from

the formula for KL divergence of two normal distributions, and from the observation that

DKL (pS,U(·|θ)||pS,U(·|θ∗ = 0)) equals

∑
s2

p(s2)
∫

[DKL (pS3(·|θ, s2, u)||pS3(·|s2, θ
∗ = 0, u)) +DKL (pS1(·|θ, s2, u)||pS1(·|s2, θ

∗ = 0, u))] dΦ(u).

Clearly, S decreases in θ, R increases in θ, R(η, 0) = 0, and S(η, 0) > 0. Therefore,

there is an interval [0, x] with 0 < x such that R(η, θ) ≥ S(η, θ) if and only if θ ∈ [0, x].

7Namely, by the “conditioning” on η. The meaning is that the distribution pS,U is induced by the distribution
η over ω.
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Similarly, there is an interval [0, y] with y > 0 such that R(η, θ) ≤ K if and only if θ ∈ [0, y].

Finally, there is an interval (z, 1] (with z possibly equal to 1) such that S(η, θ) < K if and

only if θ ∈ (z, 1]. Then,
[
0, θ̄RD (η)

]
= [0, x] ∩ [0, y] = [0,min {x, y}], and

(
θ̄S (η) , 1

]
=

(x, 1]∩ (z, 1] = (max {x, z} , 1]. In the former interval, θ∗ = 0 induces a lower KL divergence

than does ω∗
2 = 0, and the divergence is below K. In the latter interval, ω∗

2 = 0 induces a

lower KL divergence than does θ∗ = 0, and the divergence is below K. If K is sufficiently

large, then z = 0 and y = 1, so the two intervals are adjacent.

Notice that S strictly increases in m2
2, while R is constant in it. Therefore, an increase in

m2
2 leads to an increase in θ̄RD (η) (weakly) and θ̄S (η) (strictly). Also, R strictly increases

in m2
3, while S is constant in it. Therefore, an increase in m2

3 leads to a decrease in θ̄RD (η)

(strictly) and θ̄S (η) (weakly). Finally, S strictly increases in σ2
2, and R strictly decreases in

it. Therefore, an increase in σ2
2 leads to a (strict) decrease in both θ̄RD (η) and θ̄S (η).
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