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Abstract

An agent facing a binary choice uses sampling to learn about payoffs. Each

sample point carries Gaussian noise. The number of sample points about an

alternative is proportional to its choice frequency. The agent chooses the best-

performing alternative in the sample, ignoring sampling error. To account for

sample-size endogeneity, we introduce an equilibrium concept for stochastic

choice. The equilibrium effect favors the intrinsically inferior alternative, such

that its choice frequency vanishes extremely slowly with total sample size. We

also analyze how choices vary with the coarseness of the agent’s sampling data,

and illustrate how to extend this approach to games.
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1 Introduction

Additive Random Utility (ARU) is probably the most familiar modeling approach to

stochastic choice (see Strzalecki (2023) for a pedagogical exposition). According to

the ARU model, each choice alternative a carries an intrinsic utility u(a). When the

decision-maker (DM) faces a choice between alternatives, she evaluates a by u(a)+ ε,

where ε represents independently distributed noise. This noise term is commonly

interpreted as non-systematic population-wide variation in the motivations of DMs,

or within a single DM across choice situations. In both cases, ε represents uncertainty

of an outside observer.

Another interpretation of ARU is that u(a) + ε represents a noisy signal obtained

by the DM herself, lacking direct access to her intrinsic valuation of each alternative.

This process may involve introspection — for instance, trying to retrieve past experi-

ences from memory. Alternatively, it may involve physical sampling of other agents’

experiences (asking friends, reading product reviews). The DM naively extrapolates

from her noisy signal: she regards the signal as a perfect predictor of the intrinsic

value of a and chooses the alternative that maximizes u(a) + ε in her sample.

This interpretation of random choice harks back to Thurstone’s (1927) model of

noisy perception, according to which perceived stimulus is the sum of true stimulus

and normally distributed noise. In one of the examples that motivated Thurstone’s

analysis, an agent asked to identify the heavier of two objects generates Gaussian

weight signals and picks the object with the higher signal. The naive-sampling inter-

pretation of ARU extends this idea from perception of external objects to perception

of subjective preferences. We refer to this interpretation as naive sampling because it

describes the DM as a “naive frequentist” who obtains noisy additive signals of choice

alternatives’ intrinsic value and takes these signals at face value, neglecting sampling

error.

However, this description raises a natural question: Shouldn’t alternatives that

are chosen more frequently generate more precise signals? Suppose the error term ε

captures the noisiness of an introspective process by which the DM tries to access the

intrinsic value of a choice alternative. Then, when the DM chooses an alternative more

frequently, she is likely to have an easier time retrieving memories of that alternative.

Or consider the physical-sampling interpretation. When an alternative is chosen more

frequently in the relevant population, the DM can draw on a bigger sample of peers’
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experiences with this alternative.

Under both interpretations, the variance of the error term should decrease with

its popularity. This dependence creates a feedback effect: Choice frequencies depend

on DMs’ subjective evaluations of alternatives, and yet these very evaluations are

sensitive to choice frequencies. This feedback effect suggests a need for an equilibrium

concept of single-agent stochastic choice. To capture this idea, we modify the standard

ARU model. Conventionally, we assume that the DM observes the value of each

choice alternative with additive Gaussian noise. We depart from the standard model

by assuming that the variance of this noise depends on the frequency with which x is

chosen.

Specifically, we consider a setting in which the DM chooses between two alter-

natives, A and B. The DM obtains a sample of size n, consisting of nq(A) and

nq(B) observations about A and B, where q(z) is the choice frequency of alternative

z. Thus, the DM’s sample is representative. Each sample point about alternative

z generates an observed utility of u(z) + ε, where ε is an independent draw from a

normal distribution with mean zero and variance σ2. Thus, the average utility in

the DM’s sample for alternative z has mean u(z) and variance σ2/nq(z). In keeping

with the “naive frequentism” idea, the DM chooses the alternative with the highest

average utility in her sample. In a representative sampling equilibrium (RSE), the

choice frequencies that result from this procedure match q.

Under the physical-sampling interpretation, representative sampling can be taken

literally, modeling a form of experimentation in which the DM deliberately ensures

that the composition of her sample matches the relevant population, somewhat in the

manner of political pollsters. However, we prefer to think of representative sampling

as a “mean field” approximation of passive observational learning, where the DM faces

a random sample drawn from the equilibrium distribution. Under the introspective

interpretation, representative sampling captures an internal process of evaluation.

As the DM becomes more familiar with an alternative, her introspective process

generates a more precise signal. For both interpretations, the representative-sampling

approximation makes the model tractable while preserving the feature that frequently

chosen alternatives generate more precise signals.

For a concrete example of the introspective interpretation, consider an agent choos-

ing between two brands of beer, A and B. Suppose the agent would always derive

greater expected pleasure from beer B. However, she does not know her taste for
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beer well enough to recognize this. Instead, she relies on her personal memory of

previous experiences drinking these beers. These experiences are noisy, for example

due to variation in dish pairings or atmosphere. Importantly, the composition of the

sample will reflect the agent’s previous choices: if she mostly drank B in the past, she

will have a more precise understanding of her pleasure from this beer. The agent’s

memory is bounded. As time goes by, she accumulates new experiences and forgets

others. In a steady state, the probability that the agent opts for B should equal the

historical frequency of choosing it. RSE captures this notion of a steady state.

As to the physical-sampling interpretation, for a concrete example think of an

agent choosing between two hotels. Prior to making her choice, the agent reads

online reviews or asks friends who visited one of the hotels about their experiences.

Suppose that the description of these experiences is complete, as if they happened to

the agent herself (such that we can abstract from the usual inferential challenges of

social learning). The noise might be due to objective variation in service quality at

the hotels. The sample size for each hotel will depend on its popularity, such that

the agent will have a more precise impression of more popular hotels.

The key insight of our model is that naive inference from representative samples

introduces an equilibrium force that favors inferior alternatives. In the beer example,

the assumption that the one brand of beer is intrinsically inferior (according to the

DM’s true underlying taste) leads the DM to have fewer sample points about this beer,

which makes her assessment of it noisier. The DM’s naive-frequent inference implies

that a noisy assessment favors an intrinsically inferior alternative. This generates an

equilibrium effect that magnifies the inferior alternative’s choice frequency.

After establishing existence, uniqueness, and monotonicity results for RSE, our

main result addresses the implications of the basic insight for how choice frequencies

depend on the sample size n. Not only does representative sampling increase the

equilibrium frequency of the inferior alternative relative to the rational or uniform-

sample benchmarks, but the rate at which this frequency vanishes with n is extremely

slow. With uniform sampling, the probability of choosing the superior alternative is

approximately Φ(
√
n), where Φ is the cdf of the standard normal distribution. With

RSE, for any positive k there exists n after which this probability falls below Φ(nk).

Later in the paper, we consider extensions of the basic model. First, we assume

the DM has multiple types, which differ in the magnitude of the utility difference

u(B) − u(a) while agreeing on its sign. Types are partitioned into “intervals”, such
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that each type’s sample is restricted to types in the same interval. We extend the

existence, uniqueness and monotonicity results of the basic model, and carry out

comparative statics with respect to the partition’s coarseness. When intrinsic taste

differences are not too large, finer partitions lead to larger RSE choice errors. In

other words, more detailed data can lower decision quality.

Next, we extend RSE to games, and show that the favoring-inferior-alternatives

effect of RSE has non-trivial implications for cooperation patterns in static and dy-

namic versions of the Prisoner’s Dilemma. Finally, we consider a variant on RSE

in which the DM’s inference from the sample is Bayesian under a symmetric prior,

taking into account the representation of each alternative in the sample. We explain

why even this Bayesian version is not a “proper” rational-choice benchmark. We

illustrate numerically that this (analytically intractable) variant generates multiple

asymmetric equilibria even when the two alternatives are intrinsically identical.

2 Related Literature

Despite the intuitive appeal of the naive-sampling interpretation of ARU and its his-

torical connection to Thurstone (1927), it has not received much attention in the

literature on stochastic individual choice. Yet, the naive-sampling approach to ran-

dom choice has been developed in other contexts. Osborne and Rubinstein (1998)

introduced the game-theoretic concept of S(K) equilibrium, in which each player sam-

ples each available strategy K (independent) times and chooses the best-performing

strategy in her sample. Osborne and Rubinstein (2003) studied a variant on this

concept (in the context of a voting model), in which each player best-replies to a fi-

nite sample drawn from her opponents’ strategies. Spiegler (2006a,b) examined price

competition models in which consumers evaluate products using the S(K) procedure.

Sethi (2000) formalized Osborne and Rubinstein’s dynamic interpretation of S(1)

equilibrium.

Osborne and Rubinstein (1998, 2003) assumed that players regard their sample as

a noiseless estimate of the distribution from which it is drawn. This is what we referred

to as “naive frequentist” inference, which this paper assumes as well. Salant and

Cherry (2020) extended the sampling-based equilibrium approach to a more general

class of statistical inference procedures, and introduced new methods for analyzing

equilibria. Unlike the present paper, Salant and Cherry (2020) maintained Osborne
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and Rubinstein’s assumption that sample size is an exogenous parameter.

Naive frequentist inference from random samples (which involves neglect of sam-

pling error) is related to what Tversky and Kahneman (1971) called “the law of small

numbers” — namely, treating small samples as if they are perfectly representative

of the distribution they are drawn from. The idea that people take sample averages

at face value and inadequately incorporate sample size has received corroboration

both in experimental settings (e.g., Orbrecht et al. (2007)) and in studies of users’

responses to online reviews (e.g., de Langhe et al. (2016)). The observation that

frequent use of products leads to more precise information about their quality has

been considered from a very different perspective in the theoretical IO literature —

e.g., see Shapiro (1983) on the pricing of experience goods.

The literature also contains models of random choice arising from Bayesian learn-

ing about the values of alternatives — see Strzalecki (2023) for a textbook treatment.

Lu (2016) axiomatizes such a model, and demonstrates how agents’ private infor-

mation can be identified from random choice data. Natenzon (2019) uses a related

framework to explain choice anomalies such as IIA violation. Fudenberg et al. (2024)

show that a model of agents learning from finite memory generates behavior that

falls within the random choice representation in Lu (2016). In a game-theoretic con-

text, Goncalves (2020) presented a sequential-sampling-based solution concept that

adheres to Bayesian rationality, and used this concept to produce joint predictions

about choice behavior and decision times.

The physical-sampling interpretation of our model links it to the literatures on

word-of-mouth learning (e.g., Ellison and Fudenberg (1995), Banerjee and Fudenberg

(2004)) and learning in social networks (e.g., Golub and Jackson (2012)). Unlike

this paper, both literatures involve explicitly dynamic models. Like us, Banerjee and

Fudenberg (2004) assume that the process of social learning involves representative

samples. However, they assume that agents draw Bayesian inferences from noisy

observations of their predecessors’ payoffs (as well as their observed choices). An

important distinction between our paper and these works (and social-learning models

in the tradition of Bikchandani et al. (1992) and Banerjee (1992)), is that agents in

our model do not draw inferences from observed choices as such.
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3 A Model

A DM faces a choice between two alternatives, denoted A and B. The DM’s expected

utility from choosing an alternative z ∈ {A,B} is u(z). We assume that alternative

B is superior, so u(A) < u(B). Let q(z) be the probability that the DM chooses z.

We will often use the abbreviated notation q = q(B). In our model, the DM does

not know the expected utilities, and q is a consequence of her attempt to learn about

them through sampling. The DM’s total sample size is a positive integer n. Her

estimate of u(z) is independently and normally distributed as follows:

û(z) ∼ N

(
u(z),

σ2

nq(z)

)
(1)

where σ2 > 0 is the variance of a sample point from any alternative.

The motivation behind (1) is that the DM has a representative sample, consisting

of nq(z) observations of alternative z. Each observation carries Gaussian noise with

variance σ2. Thus, to recall our hotel example from the Introduction, if the fraction

of consumers in the general population who choose hotel B is 0.6 and our DM has a

sample of total size n = 10, then she will have six observations about alternative B

and four observations about alternative A. Of course, in general nq(z) need not be an

integer: As explained in the Introduction, we conceive of (1) as an approximation of

a value estimate that arises from a random sample drawn from the general consumer

population.

When q(z) = 0, û(z) is ill-defined because it involves infinite variance. To handle

this, we treat N(0,∞) as a distribution satisfying Pr(x ≤ c) = 1
2
for every c.

Definition 1. A probability q of choosing alternative B is a representative-sampling

equilibrium (RSE) if

q = Pr(û(B)− û(A) > 0)

where this probability is calculated according to (1).

The idea behind RSE is as follows. Before choosing an action, the DM samples

the utility of each alternative. An alternative’s representation in her sample matches

its choice frequency. The DM is a “naive frequentist” who takes sample outcomes at

face value. That is, she regards the sample average û(z) as an accurate representation

of her underlying expected utility from choosing z, ignoring sampling error.
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By the assumption that û(A) and û(B) are distributed according to (1), their

difference is distributed as follows:

û(B)− û(A) ∼ N

(
u(B)− u(A),

σ2

nq(1− q)

)
(2)

Denote t = u(B) − u(A). Our assumption that B is superior implies t > 0. It

is clear from (2) that the value of σ can be normalized without loss of generality,

because we can rescale t. From now on, we set σ = 1. Consequently, the equilibrium

condition can be rewritten as

q = Pr

[
N

(
0,

1

nq(1− q)

)
< t

]
or, equivalently,

q = Φ
(
t
√

nq(1− q)
)

(3)

where Φ is the cdf of the standard normal distribution (we invoke this conventional

notation consistently throughout the paper).

We will use (3) as our working definition of RSE in Section 4. This definition

immediately implies that in any RSE, the DM chooses the superior alternative (i.e.,

the z with the higher u(z)) with probability greater than 1
2
. It is not surprising that

due to sampling errors, the inferior alternative is also chosen with positive probability

in RSE.

Yet, how big is the DM’s choice error? A central theme of this paper is that repre-

sentative samples (coupled with naive-frequentist inference) magnify the probability

of errors. Specifically, when the choice distribution is skewed (i.e., when q is close to

zero or one), the variance of û(B)− û(A) is large, and this introduces an equilibrium

counter-force toward a less skewed distribution, namely larger choice errors.

The intuition that noisy measurement favors inferior alternatives is quite basic and

does not rely on the Gaussian noise structure of our model. For example, suppose

that the DM observes the value of each alternative z with independent exogenous

noise that takes the two values e and −e with equal probability, where e > 0. Then,

if e < |u(B)− u(A)| /2, the superior alternative will always be chosen, whereas when
e > |u(B)− u(A)| /2, the inferior alternative will be chosen with probability 1

4
. This

is a simple illustration that inferior alternatives can benefit from noisy assessment

8



when DMs naively follow their signal.1 Of course, the simple binary noise struc-

ture in this example cannot be obtained as the average of multiple independent and

identically distributed observations. In fact, a key reason for using a Gaussian noise

structure is that it is well-suited for distributions of sample averages, and in partic-

ular distributions of differences between averages of samples of variable size. Thus,

while the Gaussian structure is not necessary for the effect that noise favors infe-

rior alternatives, it enables thorough exploration of this effect as generated by the

representative-sampling assumption.

Comment: What does the DM observe?

One interpretation of û(z) is that it represents naive-frequentist inference from a phys-

ical sample of other people’s choices. One way to make this interpretation consistent

is to assume that the DM has enough detail about each data point to learn what

her utility would be if this were her own experience. Using our hotel example from

the Introduction, each sample point consists of a complete description of a friend’s

consumption experience. Since the experience contains random elements (room allo-

cation, staffing), it is a noisy signal of the DM’s own expected utility if she chooses

the same hotel. However, since the DM has access to the friend’s full experience, she

knows what her utility from that same experience would be.

4 Analysis

We begin our analysis with an elementary result.

Proposition 1. There is a unique RSE.

This is a special case of a more general result we present in Section 5, whose proof

(like all proofs in this paper) appears in the Appendix.

A basic observation is that the probability of choosing the superior alternative B

increases in the utility difference in favor of B and in the sample size.

Remark 1. The RSE value of q is strictly increasing in t and n.

1For illustrations of the implications of this effect for market competition, see Spiegler (2011, Ch.
7) and Szech (2011).
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For our next exercise, let q(n) denote the RSE value of q when the sample size is

n. By Remark 1, q(n) is strictly increasing. The next result shows that choice errors

vanish as n tends to infinity.

Proposition 2. limn→∞ q(n) = 1.

Before we address the speed of this convergence, let us consider the benchmark

case of a uniform sample, where each alternative is sampled n/2 times. This variant

shares the sampling-based account of random choice, while suppressing the idea that

choice frequencies affect signal precision. In the uniform-sample case, the probability

of choosing B is given by

r(n) = Φ

(
t

2
n

1
2

)
(4)

This can be viewed as a normal approximation of Osborne and Rubinstein’s (1998)

S(K) procedure, where K = n/2.

Formula (4) has two noteworthy features. First, it lacks the equilibrium effect that

arises from representative sampling. Second, since
√
q(1− q) ≤ 1

2
for any q ∈ (0, 1),

r(n) assigns higher probability to the favored alternative than q(n).

Of course, r(n) increases with n and converges to one as n → ∞. However, r(n)

differs from q(n) in the speed of convergence. Our next result demonstrates that q(n)

increases much more slowly than r(n). For convenience and without loss of generality,

we fix t = 1.

Proposition 3. Let t = 1. For every k > 0, there exists n(k) such that for every

integer n ≥ n(k): q(n) ≤ Φ(1
2
nk)

In the uniform-sample case, r(n) increases with n like Φ(
√
n). By comparison, in

the representative sample case, q(n) increases with n more slowly than Φ(nk) for any

k, however small (and in particular, smaller than 1
2
). Thus, the equilibrium forces

introduced by representative sampling have a qualitative effect on the DM’s choice

behavior, even when n is large.

Figure 1 illustrates this comparison for t = 1. Figure 1(a) focuses on the range

n < 100, while Figure 1(b) zooms out to n < 500 (and also plots Φ(1
2
n1/4)). As we can

see, the uniform-case specification exhibits fast convergence — e.g., r(30) ≈ 0.997.
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In contrast, the RSE prediction is q(30) ≈ 0.925. Considering that t = 1 represents

a utility difference of one standard deviation between the alternatives (recall that

σ = 1), this is a significant choice error. Moreover, convergence is very slow such

that from around n = 400, q(n) < Φ(1
2
n1/4). In this sense, RSE predicts larger choice

errors than the uniform-sampling model.

Since t and
√
n appear multiplicatively on the R.H.S. of (3), Proposition 3 also

means that RSE choice probabilities vary slowly with t. By comparison, in a standard

ARU with Gaussian noise (namely, a Probit model), the probability of choosing the

superior alternative would display fast convergence to 1 as we raise t, because of

the normal distribution’s thin tail. Thus, even though the underlying noise in our

model is Gaussian, choice probabilities exhibit fat-tail behavior, as a result of the

equilibrium effects of representative sampling. This is the key behavioral distinction

between RSE and the Probit model.

5 Getting Data from “Similar” Types

In many of the real-life situations that motivate our physical sampling interpretation,

people do not get their data from a representative sample of agents who are identical

to them, but rather from a population of similar agents. Even when the sample

consists entirely of the DM’s own experiences, these may involve choice situations

that are similar but not identical to the one she is facing. To capture this, we extend
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the model by assuming that the intrinsic utility difference between the alternatives is

not constant.

Let T ⊂ R++ be a finite set of DM types. Let µ ∈ ∆(T ) represent a distribution

over types, where µt denotes the fraction of DMs of type t. The DM’s expected

utility from choosing an alternative z ∈ {A,B} given her type t ∈ T is denoted

u(z, t). Henceforth, we identify t with u(B, t) − u(A, t), namely the intrinsic utility

difference between the two alternatives. Let qt(z) be the probability that a DM of

type t chooses z. We will occasionally use the abbreviated notation qt = qt(B).

Let Π be a partition of T , where Π(t) denotes the partition cell that includes t.

We assume that Π is an interval partition: If Π(t) = Π(t′) and t < t′′ < t′, then

Π(t′′) = Π(t). We define the following binary relation over Π: π′ ≻ π if and only if

t′ > t for every t ∈ π, t′ ∈ π′. Since Π is an interval partition, ≻ is a linear order.

The average frequency of choosing z among types in Π(t) is

q̄Π(t)(z) =

∑
t∈Π(t) µtqt(z)∑

t∈Π(t) µt

(5)

We will occasionally use the abbreviated notation q̄Π(t) = q̄Π(t)(B).

One interpretation of Π is that it captures coarse sample data, in the spirit of

Jehiel’s (2005) notion of analogy partitions. Under the physical-sampling take on our

model, the DM tends to learn the outcome of choices by other agents who are like her,

in the sense that they share certain characteristics with her. Under the introspective

take, the DM accesses similar situations she experienced in the past.

The extension of RSE to this setting is straightforward. As before, the DM’s total

sample size is a positive integer n. The DM’s estimate of u(z, t) is independently and

normally distributed as follows:

û(z, t) ∼ N

(
u(z, t),

σ2

nq̄Π(t)(z)

)
(6)

This reflects the assumption that the composition of the DM’s sample is determined

by the average choice frequencies of types in her partition cell.

Definition 2. A profile q = (qt)t∈T is an RSE if for every t ∈ T ,

qt = Pr(û(B, t)− û(A, t) > 0)
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where this probability is calculated according to (6).

Setting σ = 1 and following the same derivation as in Section 3, the condition for

RSE can be stated equivalently as follows. For every t,

qt = Φ
(
t
√

nq̄Π(t)(1− q̄Π(t))
)

(7)

Comment: The assumption that T ⊂ R++

Since we identify t with the intrinsic utility difference between alternatives B and A,

the assumption that all t’s are positive means that all agents derive higher expected

utility from alternative B and differ only in the magnitude of the utility difference.

One interpretation for this restriction is that B is of objectively higher quality and

DM types differ in how sensitive they are to quality differences. This assumption

is used to prove the following uniqueness result. Finding conditions for equilibrium

uniqueness when the sign of t is not constant is an open problem.

Proposition 1∗. There is a unique RSE.

This result implies Proposition 1 as a special case. And, as in the basic model, qt >
1
2

for every t ∈ T in RSE.

We now explore monotonicity properties of RSE in this extended case. First, in

an RSE profile q, if t′ > t and Π(t′) = Π(t), then qt′ > qt. To see why, note that

if Π(t′) = Π(t), then q̄Π(t′) = q̄Π(t), such that the R.H.S of (7) is higher for t′ than

for t. However, monotonicity may fail for types that belong to different partition

cells. In particular, it is possible that t′ > t and yet qt′ < qt in the unique RSE. To

see why, note that in RSE, two opposing forces shape choice probabilities. On one

hand, a higher type, which represents a greater underlying taste for B, is a force that

increases the probability of choosing this alternative. On the other hand, suppose

that Π(t′) ≻ Π(t) and t′ is at the lower end of its cell while t is at the upper end of

its cell. Then, t′ shares its cell with higher types that imply a high q̄Π(t′), whereas t

shares its cell with lower types that imply a low q̄Π(t). As a result, the sample size for

alternative A will be smaller for type t′, which implies a noisy estimate of the utility

difference between the two alternatives. This force favors the inferior alternative A,
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and therefore lowers the probability of choosing B for t′, relative to t. The net effect

of these two forces is ambiguous.

The next result establishes monotonicity of q̄π, and implies Remark 1 as a special

case.

Proposition 4. If q is an RSE profile, then π ≻ π′ implies q̄π > q̄π′.

We now turn to the question of how the coarseness of Π affects the DM’s behavior.

First, we analyze the effect of splitting a partition cell into multiple sub-cells on the

average behavior of types in the various sub-cells.

Proposition 5. Consider two partitions Π and Π′, such that Π′ refines some cell T ∗

into a collection of sub-cells {T 1, ..., Tm}. Let q and q′ be the RSE under Π and Π′.

Then:

(i) If q̄Tk > q̄T ∗, then q̄′
Tk < q̄Tk .

(ii) If q̄Tk < q̄T ∗, then q̄′
Tk > q̄Tk .

To understand this result, suppose that the original partition is fully coarse, and

its refinement divides it into two groups. Suppose further that under the original

coarse partition, the average propensity to consume the superior alternative in group

1 is above the overall average (such that group 2 is below the average). The result

says that after the refinement, the average probability of consuming the superior

alternative decreases in group 1 and increases in group 2. The intuition behind this

result is that when members of group 1 stop learning from the choices of members of

group 2, they have fewer sample points about the inferior product, which leads to a

noisier assessment and therefore a lower probability of choosing the superior product.

We now show that as long as the types in T are not too far away from zero, a finer

partition leads to a higher overall probability of taking the inferior action A. Denote

q̄(Π) =
∑
t∈T

µtqt(Π)

where qt(Π) is the RSE probability that type t chooses B under the partition Π.
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Proposition 6. Suppose t
√
n ∈ (0, 2) for every t ∈ T . Consider two interval parti-

tions Π and Π′, such that Π′ is a refinement of Π. Then, q̄(Π′) < q̄(Π).

This result establishes that when the intrinsic advantage of alternative B is not

too large, a finer partition leads to a higher probability of choice mistakes. Under the

“coarse data” interpretation, the result means that finer data has an adverse effect

on average choice quality. The question of how the coarseness of Π affects average

behavior for larger values of t remains open.

It can also be shown that under the same conditions, a finer partition has an

adverse effect on average welfare. Intuitively, this is because Proposition 5 implies

that refining the partition leads to a decrease (an increase) in the probability of

choosing B among high (low) types. Proposition 6 shows that the decrease among

the high types is greater than the increase among the low types. Since the welfare

effects of a change in choice probability are larger for high types (whose bias in favor

of B is stronger), Proposition 6 also implies an overall decrease in average welfare

following the refinement.

6 Other Extensions

The previous section extended the basic model of Section 3 by considering multiple

DM types with coarse samples. We now return to the single-type choice setting

and briefly discuss two alternative extensions. First, we consider the implications of

replacing the naive-frequentist DM with one who employs Bayesian inference. Second,

we show how naive-frequentist RSE can be extended to non-binary choice problems.

6.1 RSE with Bayesian Inference

The definition of RSE in Section 3 was based on two ideas. First, the strength of the

DM’s signal regarding an alternative (measured by the inverse of the signal’s variance)

is proportional to the (endogenous) choice frequency of this alternative. Second, the

DM’s inference from her signal is “naive frequentist” — i.e., she takes the signal at face

value and uses it as a prediction of the alternative’s true value. In this subsection, we

retain the first element but replace naive frequentism with Bayesian inference, which

takes into account samples’ size-dependent informational content. In this version of

RSE, the DM realizes that smaller samples are less informative.
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Recall that for z ∈ {A,B}, u(z) is the expected utility from alternative z, and q(z)

is the probability that the DM chooses z. To define Bayesian inference, we need to

specify a prior belief. Assume the DM’s belief over each of the alternatives is given by

an independent standard normal distribution, N(0, 1). A single observation of alter-

native z is distributed according to N(u(z), σ2). The sample average of alternative z

is x(z) ∼ N (u(z), σ2(z)), where σ2(z) = σ2/nq(z). Given the sample average realiza-

tion x(z), the DM’s posterior mean belief for alternative z is m(z) = x(z)/(1+σ2(z)).

Therefore,

m(z) ∼ N

(
u(z)

1 + σ2(z)
,

σ2(z)

(1 + σ2(z))2

)
such that

m(B)−m(A) ∼ N

(
u(B)

1 + σ2(B)
− u(A)

1 + σ2(A)
,

σ2(B)

(1 + σ2(B))2
+

σ2(A)

(1 + σ2(A))2

)
A value q = q(B) is a Bayesian RSE if q = Pr(m(B) − m(A) > 0), where this

probability is computed for samples with a share q of alternative B. Equivalently,

q = Φ

(
u(B)(1 + σ2(A))− u(A)(1 + σ2(B))√
σ2(B)(1 + σ2(A))2 + σ2(A)(1 + σ2(B))2

)
(8)

Comment: Is the Bayesian-RSE DM rational?

Even though this DM is Bayesian, her inference is inconsistent with rational expec-

tations, once we think about the dynamic learning process that implicitly underlies

the equilibrium concept. The Bayesian-RSE DM takes into account sample sizes

when performing her inference from the sample averages. However, she does not take

into account the reasoning that led to these sample sizes in the first place. In a

dynamic learning model, a Bayesian DM with access to the outcomes of choices by

n other agents would draw inferences not only from these outcomes but also from

the choice frequencies in the sample. These frequencies reflect the other agents’ own

inferences from the samples at their disposal, which our DM does not observe. This

is a standard feature of Bayesian social learning processes, which Bayesian RSE does

not incorporate. Formulating a Bayesian-rational learning model that incorporates

these inferences would require abandoning the static stochastic-choice framework, and

specifying an explicit extensive-form game that describes the social-learning process.
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Formula (8) is significantly more complex than formula (3), which defines our

original notion of RSE (based on naive frequentism). First, while (3) only makes use

of the difference t = u(B) − u(A) between the two alternatives’ intrinsic utility, the

Bayesian version is a function of u(A) and u(B) individually (because their relation

to the prior belief is also relevant). Second, the dependence of the R.H.S of (8)

on q is significantly more complicated than in (3). This added complexity makes the

model considerably less amenable to analytic characterization. In addition, numerical

analysis reveals that unlike our basic RSE, the Bayesian version admits multiple

equilibria. This feature appears even when u(A) = u(B) = u — i.e., when the

two alternatives are intrinsically identical. The basic definition of RSE admits a

unique equilibrium q = 1
2
in this case. While this continues to be an equilibrium

under Bayesian RSE, asymmetric equilibria can emerge (note that whenever q is an

equilibrium, 1− q is an equilibrium as well). Some examples are:

u σ2

n
q

0.5 0.01 0.108211

0.9 0.23 0.355468

1.5 0.71 0.294828

2 1.05 0.10644

The intuition behind asymmetric equilibria is as follows. Suppose that average

utilities in the DM’s sample are x(A) > x(B) > 0. This leads to a stronger tendency

to choose alternative A. As a result, the sample size about alternative B is smaller.

A Bayesian DM, unlike the naive-frequentist one, reacts to this paucity of evidence

by heavily discounting x(B) toward the prior zero. This exacerbates the perceived

difference between the two alternatives, which perpetuates the tendency to choose

alternative A. Thus, asymmetric equilibria are possible in Bayesian RSE, even when

the two alternatives are intrinsically identical. While potentially interesting by itself,

this multiplicity of equilibria also means that the Bayesian version of RSE is less

convenient for applications than our original version, in addition to the complications

that arise from its highly intractable formula.
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6.2 Non-Binary Choice

Extending the model of Section 3 to choice settings with more than two alternatives

is conceptually straightforward. Consider a naive-frequentist DM choosing between

alternatives A1, . . . , An. Let u(Ai) denote her expected utility from Ai, and let her

estimate of the utility from each alternative Ai be independently and normally dis-

tributed as follows:

û(Ai) ∼ N

(
u(Ai),

σ2

nq(Ai)

)
where q(Ai) is the probability that the DM chooses Ai, and σ2 is the variance of a

sample point from any alternative.

The profile (q(Ai))i=1,...,n is an RSE if for all i = 1, . . . , n,

q(Ai) = Pr(û(Ai) > max
j ̸=i

û(Aj))

Fixing σ2 = 1, the RSE equations can be written as

q(Ai) =

∫ +∞

−∞

(∏
j ̸=i

Φ

(
(x− u(Aj))

√
nq(Aj)

))√
nq(Ai)ϕ

(
(x− u(Ai))

√
nq(Ai)

)
dx

Here we are integrating the probability that the utility estimates for all alternatives

Aj ̸= Ai are below the estimate for Ai, and integration is with respect to the distri-

bution of û(Ai).

In the binary-choice case, we relied on properties of Gaussian variables to obtain a

simple fixed-point equation for the RSE. The fixed-point equations for the non-binary

case are considerably more involved. Whether the n > 2 version of the model leads

to a unique RSE and whether it satisfies regularity (i.e., adding an alternative to the

choice set weakly lowers the choice probabilities of all other alternatives) remain open

questions.

7 RSE in Games

Once we understand that representative-sampling-based choice requires an equilib-

rium modeling approach even in single-agent decision problems, extending this idea to

interactive decision-making is rather straightforward. Indeed, as explained in Section
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2, this paper is related to the game-theoretic literature that introduced sampling-

based equilibrium concepts (notably Osborne and Rubinstein (1998,2003) and Salant

and Cherry (2020)). In this section we substantiate this link and describe how to

extend RSE to strategic-form games. We use the Prisoner’s Dilemma to illustrate

how the basic force captured by RSE can have significant implications for games,

especially in relation to S(K) equilibrium.

For expositional simplicity, restrict attention to symmetric, finite two-person games

(but allow action sets of arbitrary size). Players’ action set is A and their vNM utility

function is u : A × A → R. Suppose player j follows a mixed strategy q ∈ ∆(A),

where q(a) denotes the probability of playing a. Then, each action ai ∈ A for player

i induces a lottery over her payoff v, where

Pr(v | ai) =
∑

aj∈A|u(ai,aj)=v

q(aj)

This lottery has well-defined mean and variance, denoted mq(ai) and σ2
q (ai). Based

on this pair, we can construct a well-defined normal variable N(mq(ai), σ
2
q (ai)). As

before, let n denote a player’s total sample size.

Players use naive sampling to evaluate actions, just as they did for consumption

alternatives in the basic model. Specifically, a player’s estimated payoff from playing

a when her opponent is playing q is defined to be

ûq(a) ∼ N

(
mq(a),

σ2
q (a)

nq(a)

)
(9)

Definition 3. A mixed strategy q ∈ ∆(A) is an RSE if for every a ∈ A,

q(a) = Pr [ûq(a) > ûq(a
′) for every other a′ ∈ A]

The equilibrium definition itself is a straightforward extension of RSE to sym-

metric two-player games. In the spirit of the sampling-based game-theoretic solution

concepts described above, it captures the idea that players base their choices on

samples from the equilibrium distribution. RSE introduces an additional layer of

endogeneity, in that a player’s sample composition also depends on her own strategy.

The extension of RSE to games involves another modeling innovation, which is

the Gaussian approximation of the payoff distribution induced by each action given
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the opponent’s mixed strategy, as given by (9). In the basic model of Section 3, we

took the Gaussian noise as given without probing its origin, as is common in the

stochastic choice literature. However, when we turn to games, the payoff distribution

is determined by the structure of the game, and therefore the Gaussian approximation

needs to be constructed more explicitly. The Central Limit Theorem means that the

approximation is good when nq(a) is moderately large.

7.1 An Example: The Prisoner’s Dilemma

To illustrate the extended definition of RSE, consider the following symmetric 2× 2

game. The action set for each player is {0, 1}. Player i’s payoff is ui(ai, aj) = aj−cai,

where c ∈ (0, 1). This is a standard specification of the Prisoner’s Dilemma, where

the strictly dominant action a = 0 corresponds to defection.

As in Section 4, our main interest here is in the contrast between the predictions

of RSE and the uniform-sample case.

Proposition 7. The Prisoner’s Dilemma has a unique symmetric RSE, where the

probability of playing a = 0 is Φ(c
√
n).

Thus, RSE uniquely predicts a positive probability of cooperation, which is below
1
2
and decreases with c and n. One might think that playing a strictly dominated

action with positive probability is merely a consequence of sampling error. However,

we now demonstrate the crucial role that representative sampling plays in this result.

Specifically, compare our analysis with the uniform-sample case: a player’s estimated

gain from playing a = 0 is

û(0)− û(1) ∼ N

(
c,
2r(1− r)

n
+

2r(1− r)

n

)
= N

(
c,
4r(1− r)

n

)
where r is the probability that the player’s opponent plays a = 0. The equilibrium

condition for this uniform-sample variant is

r = Pr

{
N

(
0,

4r(1− r)

n

)
> −c

}
(10)

Remark 2. When nc2 > 8, the unique solution of (10) is r = 1.
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This example demonstrates once again the key role of representative sampling in

two-action decision problems — specifically, its enhancement of the perceived value

of inferior actions. In the Prisoner’s Dilemma (as in any simultaneous-move game),

the distribution of a single sample point for a player’s action is given by the oppo-

nent’s mixed strategy. As this strategy becomes more skewed in favor of the superior

action (defection), its variance vanishes and makes the player’s assessment of the two

actions more accurate. Under a uniform sample, this force eliminates the possibility

of cooperative play when n is not too small. The representative-sample assumption

introduces a counter-force that favors the inferior action (cooperation) and therefore

manages to sustain it with positive equilibrium probability for any value of n.

Comment. Arigapudi et al. (2021) study S(K) equilibria in the Prisoner’s Dilemma

and their dynamic convergence properties. They show that for some range of values of

K and the payoff parameters, cooperation can be part of a stable S(K) equilibrium.

However, if K is not small enough relative to the parameters that correspond to c in

the present example, cooperation cannot be sustained in equilibrium. The uniform-

sample version of the present model serves as a normal approximation of the analysis

in Arigapudi et al. (2021), where K = n/2.

7.2 Dynamic Games: An Infinite-Horizon Trust Game

Consider the following overlapping-generations version of the Prisoner’s Dilemma.

Imagine time as stretching to infinity in both directions, i.e., t = . . .− 2, 1, 0, 1, 2, . . .

At every period t, a distinct agent, referred to as player t, chooses an action at ∈ {0, 1}.
Player t’s payoff is purely a function of at and at+1, given by u(at, at+1) = at+1 − cat,

where c ∈ (0, 1) is a constant. This is the same payoff function as in Section 7.1,

where at = 1 means that player t decides to “put her trust” in player t+ 1.

Players have limited recall : they can only condition their action on the two most

recent actions. The set of relevant truncated histories is H = {0, 1}2. For every

truncated history h = (at−2, at−1), (h, at) is a shorthand notation for the concatenated

truncated history (at−1, at). A behavioral strategy for any player t in this game is a

function f : H → [0, 1], where f(h) is the probability that at = 1 given the truncated

history h.

Benchmark: Nash equilibrium

As usual, this game has a Nash equilibrium in which every player chooses a = 0
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after every history. This is the unique symmetric Nash equilibrium if we impose

the following refinement: player t’s equilibrium strategy conditions on an action in

her truncated history only when she believes that this action affects the behavior of

player t + 1.2 The reason is as follows. Fix a candidate Nash equilibrium. Define

m∗ ≤ 2 as the effective recall associated with this equilibrium. For example, m∗ = 1

means that players condition their behavior on the most recent action, but they do

not condition on earlier actions. Suppose m∗ > 0, and consider player t’s reasoning.

By the definition of m∗, this player knows that player t + 1 will not condition her

behavior on at−m∗ . By the refinement, player t herself will not condition her action on

at−m∗ , contradicting the definition of m∗. It follows that m∗ = 0, which means that

players never condition their behavior on the history. This makes a = 0 the unique

best-reply for each player.

The game also has symmetric Nash equilibria in which players cooperate. For

instance, every f that satisfies f(h, 1)− f(h, 0) = c is a symmetric Nash equilibrium,

because players are always indifferent between the two actions. This equilibrium

violates the criterion that players condition on a past action only when they believe

it is relevant for predicting future behavior.

Let us extend the definition of RSE to this dynamic setting, where players evalu-

ate actions at specific truncated histories. It makes sense to assume that frequently

visited truncated histories will generate more observations than rarely visited ones.

Therefore, a proper extension of RSE should take into account not only action fre-

quencies, but also the (endogenous) frequencies of the truncated histories at which

the actions are evaluated.

Formally, a behavioral strategy f induces a discrete-time Markov process, in which

the set of states is the set of truncated histories H. The probabilities of transition

from h ∈ H into the concatenated truncated histories (h, 1) and (h, 0) are f(h) and

1− f(h), respectively. If f(h) ∈ (0, 1) for every h — i.e., f has full support — then

the Markov process is irreducible and therefore has a unique invariant distribution

over H, denoted αf . Moreover, this distribution has full support.

For every h ∈ H and a ∈ {0, 1}, define the following independently distributed,

2This refinement is consistent with the idea that players prefer not to use complex strategies
unless they have a strict benefit from doing so, as in Rubinstein (1986).
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normal random variable:

f̂(h, a) ∼ N

(
f(h, a),

f(h, a)(1− f(h, a))

nαf (h, a)

)
(11)

This variable represents a player’s estimate of the probability that the subsequent

player will choose a = 1 following the truncated history (h, a). The origin of this

expression is as follows. When a player acts at the truncated history h, she obtains

a total of nαf (h, a) observations about the consequences of playing a at h. Each

observation is a Bernoulli distribution with success rate f(h, a). Formula (11) is

a normal approximation of the distribution of the sample average induced by this

Bernoulli distribution.

Definition 4 (RSE in the trust game). A full-support strategy f is an RSE if, for

every h ∈ H,

f(h) = Pr(f̂(h, 1)− f̂(h, 0) ≥ c) (12)

where f̂ is defined by (11).

The following result shows that RSE involves non-stationary strategies. In par-

ticular, it implies positive reciprocity.

Proposition 8. In any RSE, f(at−2, at−1) is strictly increasing in at−1.

The message of this result is that reciprocity emerges naturally under RSE, when

the representative-sample principle extends to the truncated histories at which they

evaluate actions. Note also that RSE satisfies the criterion that players condition

on a past action only when they believe it is relevant for predicting their opponent’s

behavior.

To see the logic behind the result, note that in equilibrium, one of the two actions is

objectively better for all players, regardless of the history. Indeed, if f1−f0 < c (> c),

defection (cooperation) is strictly better. Furthermore, the inferior action will be

played with frequency below 50% after any truncated history — just as alternative A

was chosen with probability below 1
2
in the binary choice model. To fix ideas, assume

cooperation (a = 1) is the inferior action. Then, since cooperation is less frequent
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Figure 2

than defection, agents will have fewer observations about what happens after the

truncated history (h, 1) compared to the history (h, 0). This means that their payoff

estimates following (h, 1) will be noisier, leading them to choose the inferior action

a = 1 with higher probability after (h, 1) than after (h, 0). The same logic holds if

defection is the inferior action.

While it seems plausible that a = 1 should be the inferior action in every equi-

librium, we have been unable to prove this so far. The same holds for the question

of uniqueness of RSE. Both conjectures are supported by numerical computations of

RSE, the results of which are presented in Figure 2. This figure presents the values

of f0 and f1 as a function of the parameters c and n, in the unique RSE that we

could solve for numerically. Finally, whether the reciprocity patterns hold when both

players have longer recall is another open question.

By incorporating the (endogenous) frequencies of histories, RSE takes us further

away from the “active experimentation” image behind S(K) equilibrium and brings us

closer to a sampling-based equilibrium concept in which sample data is observational

in nature.

8 Conclusion

This paper introduced a modeling innovation to the literature on stochastic choice and

explored its implications in binary choice environments. We adopted a naive-sampling
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interpretation of the ARU model with Gaussian noise, and introduced representative

sampling to capture the idea that the precision of a DM’s signal about an alternative

increases with its choice frequency. This, in turn, required an equilibrium approach

to modeling single-agent stochastic choice. To facilitate an extension of these ideas to

games, we used Gaussian signals as a modeling approximation, such that the mean

and variance of the Gaussian signal are given by the payoff distribution induced by

players’ equilibrium mixed strategies.

The main economic insight that emerged from our exercise was the equilibrium

force that favors inferior alternatives. This force implies very slow convergence to ra-

tional choice as sample size increases, and positive cooperation rates in the Prisoner’s

Dilemma for any sample size. For the same reason, convergence to rational choice is

very slow as the underlying utility difference between the two alternatives rises. This

means that RSE exhibits fat-tail patterns in binary stochastic choice, even though the

underlying noise structure is Gaussian and therefore thin-tailed. The same equilib-

rium force has nuanced implications in environments with more complex information

structures, as demonstrated by the comparative statics with respect to the coarseness

of the DM’s data, or by the reciprocity patterns in the dynamic trust game.

Finally, RSE can serve as a modeling gadget in behavioral IO or political-economy

applications, where firms (political parties) compete for consumers (voters) who eval-

uate alternatives via naive extrapolation from finite samples.

Appendix: Proofs

As mentioned in the text, Proposition 1 is a special case of Proposition 1∗. For

Remark 1, note that monotonicity in t follows as a special case of Proposition 4, and

monotnicity in n can be proved with exactly the same argument since t and
√
n have

identical roles in the equilibrium condition in (3). Note that Propositions 2 and 3

rely on the uniqueness of RSE, i.e., on Proposition 1∗.

Proof of Proposition 2

Assume the contrary — i.e., there exists q∗ < 1 such that for every n > 0, there exists

n′ > n such that q(n′) < q∗. Recall that q(n′) > 1
2
. Therefore, for all such n′,

q(n′)(1− q(n′)) > q∗(1− q∗)
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Consequently,
√

n′q(n′)(1− q(n′)) diverges with n′, which implies that, from some

point onward,

Φ
(
t
√
n′q(n′)(1− q(n′))

)
> q∗

a contradiction. ■

Proof of Proposition 3

We will prove that for all k > 0,

q(n) ≤ Φ(nk)

from some n(k) onward. The general claim follows immediately with a suitable change

of n(k). Let n, k > 0 and denote x = q(n). That is, x is the unique solution to

x = Φ
(√

nx(1− x)
)

Assume that x > Φ(nk). Since Φ is monotonically increasing,
√
nx(1− x) > nk or,

equivalently,

x(1− x) > n2k−1 (13)

The contradiction is immediate for k ≥ 1
2
. Henceforth, we assume k < 1

2
.

Let f(x) = x(1− x). The function f is invertible for x ∈ [1
2
, 1] with f−1 : [0, 1

4
] →

[1
2
, 1] given by f−1(x) = 1+

√
1−4x
2

. The inequality (13) implies 0 < n2k−1 < 1
4
and,

since f is strictly decreasing for x ∈ [1
2
,1], also implies,

x < f−1(n2k−1) =
1 +

√
1− 4n2k−1

2

Thus,

Φ(nk) < x <
1 +

√
1− 4n2k−1

2

Hence, it suffices to show that from some n onward,

Φ(nk) ≥ 1 +
√
1− 4n2k−1

2

By the Chernoff bound for the normal distribution (e.g., see Boucheron et al. (2013)),

1− Φ(x) ≤ e−
x2

2 (14)
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for all x > 0. Thus, Φ(nk) ≥ 1− e−
n2k

2 and it suffices to prove

e−
n2k

2 ≤ 1−
√
1− 4n2k−1

2
(15)

for sufficiently large n. To see this, define

h(n) =
1−

√
1− 4n2k−1

2
− e−

n2k

2

Note that (since k < 1
2
) limn→∞h(n) = 0. We now show that there exists n(k) such

that for all n ≥ n(k), h′(n) < 0. This will imply h(n) ≥ 0 for all n ≥ n(k) and thus

that (15) holds for all such n. We have

h′(n) =
(2k − 1)n2k−2

√
1− 4n2k−1

+ kn2k−1e−
n2k

2

Therefore, h′(n) < 0 if and only if

e
n2k

2

n
√
1− 4n2k−1

>
k

1− 2k

Successive applications of L’Hôpital’s rule imply

limn→∞
e

n2k

2

n
√
1− 4n2k−1

= ∞

which completes the proof. ■

Proof of Proposition 1∗

Equation (7) defines a fixed point of a continuous mapping from [0, 1]|T | to itself. Such

a fixed point exists, by Brouwer’s fixed-point theorem. Therefore, an RSE exists.

We prove uniqueness by contradiction. Without loss of generality, consider a

trivial partition in which the only cell is T . Assume that q = (qt)t∈T and q′ = (q′t)t∈T

are both RSE solutions and q ̸= q′. Then, there exists t ∈ T for which qt ̸= q′t.

So, by (7), q̄′ ̸= q̄. Assume without loss of generality that q̄ > q̄′. Since t > 0 for

every t ∈ T , we have qt, q
′
t >

1
2
for every t ∈ T and hence q̄ > q̄′ > 1

2
. This implies
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q̄(1− q̄) < q̄′(1− q̄′). Thus, for all t ∈ T ,

qt = Φ
(
t
√

nq̄(1− q̄)
)
< Φ

(
t
√

nq̄′(1− q̄′)
)
= q′t

Hence,

q̄ =
∑
t∈T

µtqt(z) <
∑
t∈T

µtq
′
t(z) = q̄′

a contradiction. ■

Proof of Proposition 4

Suppose that π ≻ π′, and assume that q̄π′ ≥ q̄π. As we already saw, since t > 0

for every t ∈ T , qt > 1
2
for every t in RSE, and therefore q̄π > 1

2
. It follows that

q̄π(1− q̄π) ≥ q̄π′(1− q̄π′). Since t > t′ for every t ∈ π, t′ ∈ π′, it follows from (7) that

qt > qt′ in RSE for every t ∈ π, t′ ∈ π′, hence q̄π > q̄π′ , a contradiction. ■

Proof of Proposition 5

We prove part (i); the proof of part (ii) follows the same logic. Suppose q̄Tk > q̄T ∗

for some k ∈ {1, ...,m}. Then, since both quantities are above 1
2
,

q̄Tk(1− q̄Tk) < q̄T ∗(1− q̄T ∗)

By (3),

qt = Φ
(
t
√

nq̄T ∗(1− q̄T ∗)
)

for every t ∈ T ∗. Therefore, since Φ is an increasing function,

qt > Φ
(
t
√

nq̄Tk(1− q̄Tk)
)

for every t ∈ T ∗. Taking an average over t ∈ T k with respect to the conditional type

distribution given T k, we obtain

q̄Tk −
∑
t∈Tk

µt∑
t∈Tk µt

Φ
(
t
√
nq̄Tk(1− q̄Tk)

)
> 0 (16)

By comparison, the definition of q′ requires

q̄′Tk −
∑
t∈Tk

µt∑
t∈Tk µt

Φ
(
t
√
nq̄′

Tk(1− q̄′
Tk)
)
= 0 (17)
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Since the L.H.S of (16)-(17) is an increasing function of a scalar variable (q̄Tk in the

inequality, q̄′
Tk in the equation), it follows that q̄′

Tk < q̄Tk . ■

Proof of Proposition 6

For notational simplicity only, we set n = 1 in what follows. Take two interval

partitions Πc and Πf , such that Πf is a refinement of Πc. For notational simplicity,

let qft = qt(Π
f ) and qct = qt(Π

c).

Consider some cell T ∗ ∈ Πc. Denote

αt =
µt∑

s∈T ∗ µs

Define

Qc =
∑
t∈T ∗

αtq
c
t =

∑
t∈T ∗

αtΦ
(
t
√
Qc (1−Qc)

)
This is the average equilibrium probability of choosing B among types in T ∗ under

the partition Πc.

Obviously, if T ∗ is also a cell in Πf , then qct = qft for every t ∈ T ∗, hence QC = Qf .

We now turn to the non-degenerate case, in which Πf strictly refines the cell T ∗. Let

βπ be the probability of π ∈ Πf conditional on π ⊂ T ∗. Denote

q̄π =
∑
s∈π

αs

βπ

qfs

Define

Qf =
∑
t∈T ∗

αtq
f
t =

∑
t∈T ∗

αtΦ
(
t
√
q̄Πf (t)(1− q̄Πf (t))

)
This is the equilibrium probability of choosing B conditional on t ∈ T ∗ under Πf .

Suppose that Qc ≤ Qf . Then, since
√

q(1− q) is strictly decreasing in q > 1
2
,√

Qc(1−Qc) ≥
√

Qf (1−Qf )

Since Φ is strictly increasing,

Qc =
∑
t∈T ∗

αtΦ
(
t
√

Qc (1−Qc)
)
≥
∑
t∈T ∗

αtΦ
(
t
√
Qf (1−Qf )

)

29



Denote

xπ =
√

q̄π(1− q̄π)

The expression
√

q(1− q) is strictly concave in q. Therefore,

√
Qf (1−Qf ) =

√√√√(∑
π⊂T ∗

βπ q̄π

)(
1−

∑
π⊂T ∗

βπ q̄π

)
>
∑
π⊂T ∗

βπ

√
q̄π(1− q̄π) =

∑
π⊂T ∗

βπxπ

Define the function H(s, x) = Φ (sx) where s, x > 0. Since Φ is strictly increasing,

∑
t∈T ∗

αtΦ(t
√
Qf (1−Qf )) >

∑
t∈T ∗

αtΦ

(
t
∑
π⊂T ∗

βπxπ

)
=
∑
t∈T ∗

αtH

(
t,
∑
π⊂T ∗

βπxπ

)

By concavity of H with respect to its second argument,

H

(
t,
∑
π⊂T ∗

βπxπ

)
>
∑
π⊂T ∗

βπH(t, xπ)

for every t. Therefore,

∑
t∈T ∗

αtH

(
t,
∑
π⊂T ∗

βπxπ

)
>
∑
t∈T ∗

∑
π⊂T ∗

αtβπH(t, xπ)

Note that xπ ∈ (0, 1
2
) for every π, by the definition of xπ. Furthermore, by

Proposition 4, the cells in Πf are ordered such that q̄Πf (t) is increasing in t, and

hence xΠf (t) is decreasing in t. By Lemma 1 below, H is supermodular when t < 2.

Therefore, ∑
t∈T ∗

∑
π⊂T ∗

αtβπH(t, xπ) >
∑
t∈T ∗

αtH(t, xΠf (t))

=
∑
t∈T ∗

αtΦ
(
t
√
q̄Πf (t)(1− q̄Πf (t))

)
= Qf

This inequality is a special case of a standard inequality from the literature on stochas-
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tic orderings — e.g., see Tchen (1980).3 We have thus obtained Qc > Qf , a contra-

diction. It follows that for every cell T ∗ ∈ Πc, Qc ≥ Qf , with a strict inequality for

at least one cell. Therefore, q̄(Πc) > q̄(Πf ). ■

Lemma 1. Let H(s, x) = Φ (sx) where s, x > 0. If s < 2 and x ∈ (0, 1
2
), then H is

supermodular.

Proof of Lemma 1

Recall that

H(s, x) =
1√
2π

∫ sx

−∞
e−

a2

2 da

The cross derivative of H is

∂H(s, x)

∂x∂s
=

e−
(xs)2

2

√
2π

[
1− (xs)2

]
When x < 1

2
, this expression is strictly positive whenever s < 2. ■

Proof of Proposition 7

Let q denote the RSE probability of a = 0. When a player draws a single sample

point from an action a, she obtains the payoff 1− ca with probability 1− q and the

payoff −ca with probability q. The normal distribution that shares the mean and

variance with this random variable is

N (1− q − ca, q(1− q))

In RSE, the player samples a = 0 nq times and a = 1 n(1− q) times. Therefore, the

player’s estimated gain from playing a = 0 is

û(0)− û(1) ∼ N

(
c,
q(1− q)

nq
+

q(1− q)

n(1− q)

)
= N

(
c,

1

n

)
In RSE,

q = Pr

{
N

(
0,

1

n

)
> −c

}
= Φ(c

√
n)

This completes the proof. ■

3We thank Meg Meyer for the reference.
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Proof of Remark 2

The condition (10) can be rewritten as

r = Φ

(
c

√
n

4r(1− r)

)
Applying the Chernoff bound (14), we obtain

r = Φ

(
c

√
n

4r(1− r)

)
≥ 1− e−

c2n
8r(1−r)

This inequality is equivalent to

x ≤ e−
c2n

8x(1−x)

where x = 1 − r. We now show that when nc2 > 8, this inequality fails for all

x ∈ (0, 1]. To see this, denote t = c2n and define

f(x, t) = x− e−
t

8x(1−x)

Note that for all x > 0, f(x, t) is increasing in t for t > 0. Thus, it suffices to prove

that f(x, 8) > 0 for all x ∈ (0, 1]. For all such x we have x > x(1− x) > 0 and hence,

f(x, 8) = x− e−
1

x(1−x) > x− e−
1
x

The R.H.S can easily be shown to be strictly positive for all x > 0. ■

Proof of Proposition 8

First, observe that f(h) only depends on the most recent action, i.e., f(h) =

f(at−2, at−1) is constant in at−2. Indeed, by equations (11) and (12), f(h) is pinned

down by f(h, 1), f(h, 0), αf (h, 0) and αf (h, 1), which by definition do not depend on

the earliest action in the truncated history h (e.g., if h = (at−2, at−1) then (h, a) =

(at−1, a)).

Accordingly, we denote by fa the probability that at+1 = 1 conditional on at = a.

In a similar vein, we use the notation αh for αf (h). Then, condition (12) can be
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written as

f1 = Pr
(
f̂(1, 1)− f̂(1, 0) ≥ c

)
f0 = Pr

(
f̂(0, 1)− f̂(0, 0) ≥ c

)
where

f̂(1, 1)− f̂(1, 0) ∼ N

(
f1 − f0,

f1(1− f1)

nα11

+
f0(1− f0)

nα10

)
f̂(0, 1)− f̂(0, 0) ∼ N

(
f1 − f0,

f1(1− f1)

nα01

+
f0(1− f0)

nα00

)
By the definition of αf ,

α11 = f1 · (α11 + α01)

α10 = (1− f1) · (α11 + α01)

α01 = f0 · (α10 + α00)

α00 = (1− f0) · (α10 + α00)

1 = α00 + α01 + α10 + α11

The solution for αf is

α11 =
f1f0

1+f0−f1

α10 =
f0(1−f1)
1+f0−f1

α01 =
f0(1−f1)
1+f0−f1

α00 =
(1−f0)(1−f1)

1+f0−f1

If f1 − f0 ≥ c, then f1 > f0 and we are done. Now suppose f1 − f0 < c. Then,

f1, f0 < 1
2
. Therefore, α11 < α01 and α10 < α00. It follows that f̂(1, 1) − f̂(1, 0) and

f̂(0, 1)− f̂(0, 0) have the same mean, and

V ar(f̂(0, 1)− f̂(0, 0)) < V ar(f̂(1, 1)− f̂(1, 0))

Since the mean lies below c,

f1 = Pr(f̂(1, 1)− f̂(1, 0) ≥ c) > Pr(f̂(0, 1)− f̂(0, 0) ≥ c) = f0 ■
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