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Abstract

A sequence of agents with one-period recall play an overlapping-

generations Prisoner’s Dilemma with state-dependent payoffs. play-

ers’belief regarding others’behavior is a “coarse fit”of the true pop-

ulation strategy w.r.t a partition of the relevant contingencies. In

equilibrium, the partition minimizes the sum of the mean squared

prediction error and a complexity penalty on the partition size; and

players best-reply to the belief. The scope for cooperation is sig-

nificantly reduced under this solution concept, relative to symmetric

mixed-strategy Nash equilibrium.

∗Financial support from UKRI Frontier Research Grant no. EP/Y033361/1 is grate-
fully acknowledged. I thank Alex Clyde, Philippe Jehiel, Nir Rosenfeld and Yair Weiss
for useful conversations and comments.
†Tel Aviv University and University College London

1



1 Introduction

With the growing ubiquity of machine-learning (ML) algorithms, economist

are becoming increasingly interested in howML affects strategic interactions.

Of particular interest are dynamic strategic interactions, where players may

use ML to learn how to respond to opponents’history-dependent behavior

– which itself may be the product of algorithmic learning. For example, as

oligopolists adopt ML algorithms for pricing decisions, a natural question of

economic importance is how this tendency impacts the scope for collusive

pricing.

ML algorithms broadly fall into two paradigms, based on whether con-

structing a predictive model of the environment is part of what the algorithm

does. Model-free methods such as reinforcement learning are based on a di-

rect association between actions and feedback, without building a model of

how actions map into outcomes. In contrast, model-based methods learn a

predictive model of the environment’s data-generating process. The space

of models that the algorithm explores may be highly structured and inter-

pretable (e.g., penalized linear regression or probabilistic graphical models)

or loose and uninterpretable (e.g., contemporary LLMs).

So far, the economic literature on dynamic strategic interactions between

ML algorithms has focused on model-free ML. Specifically, it has examined

the behavior that arises when players use reinforcement-learning algorithms.

In contrast, there have been no attempts to analyze models of long-run

cooperation when players react to beliefs shaped by model-based ML. This

paper is a step in this direction.

Studying dynamic games between players who rely on model-based ML

to form beliefs is of interest, not only because of its potential economic rel-

evance, but also because it raises a fundamental conceptual question about

how ML performs on endogenous datasets. An integral aspect of ML belief

formation is the penalty on complexity to avoid overfitting and thus lower the

variance of the algorithm’s predictions. In the context of dynamic strategic

interactions, this penalty on complexity may take the form of pooling dif-

ferent contingencies (exogenous states of Nature, extensive-game histories)

as if they are equivalent. This consideration implies two sources of tension

between what the model-based-ML and individual-incentive perspectives re-
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gard as important distinctions about opponents’play.

First, for a model-based ML algorithm, a rare event is typically treated

as unimportant, and the algorithm will tend to group it with other events to

improve prediction. In contrast, from the individual-incentive perspective,

an event is important if it affects the player’s best-replying action. For

instance, in the repeated Prisoner’s Dilemma, the threat of defection sustains

cooperation when it is a counterfactual (or at least rate) event. Thus, the two

perspectives differ in how they link an event’s importance to its frequency.

Second, when opponents’behavior is similar in two contingencies, model-

based-ML-generated beliefs will tend to treat the two contingencies as equiv-

alent for predicting the opponent’s future behavior. However, from the point

of view of individual incentives, two contingencies should be classified as

equivalent if they induce the same best-replying actions. Two beliefs can

be close for prediction purposes yet radically different in terms of the best-

reply they induce. Thus, the two perspectives have different notions of what

makes two contingencies similar and thus worth pooling.

The challenge, then, is that model-based ML is designed to make suc-

cessful predictions, not to reach relevant classifications for how to respond to

these predictions. This raises the central question: How does this misalign-

ment between the model-based ML and individual-incentive perspectives

affect the possibility of sustaining long-run cooperation in dynamic strategic

interactions?

I explore this question in the context of a simple discrete-time, infinite-

horizon game. At every period t, a distinct player plays a Prisoner’s Dilemma

with his immediate successor, player t + 1. The game’s payoffs are deter-

mined by a random, commonly observed state θ, which specifies the ratio

between the cost of cooperating and the benefit from receiving cooperation

from one’s opponent. Players can condition their actions on the most recent

action. This can be viewed as an overlapping-generations trust game, in

which players’task is to predict how their immediate successor’s rate of co-

operation will depend on their own action. Symmetric mixed-strategy Nash

equilibrium can sustain arbitrarily high cooperation rates using a probabilis-

tic Tit-for-Tat strategy, such that at every payoff state, players are always

indifferent between cooperating and defecting.

I adhere to the equilibrium modeling approach in analyzing the dynamic
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trust game, while modifying the consistency criterion of equilibrium beliefs,

in a way that closely resembles Jehiel and Weber (2024). The modifica-

tion captures in stylized form a common element of ML, namely explicitly

trading off a model’s quality of empirical fit against its complexity (e.g., see

Hastie et al. (2009)). Specifically, I assume that players’belief is formed

according to a partition of all relevant contingencies (i.e., combinations of

a payoff state and the recalled history). The belief associated with a par-

tition cell is the average behavior in that cell, as in Jehiel (2005). The

average is taken w.r.t the ergodic distribution over contingencies that is in-

duced by the population-level mixed strategy. An ML-optimal partition is

required to minimize the sum of two terms: (1) the Mean Squared Predic-

tion Error (MSPE) of the partition-induced belief, calculated according to

the ergodic distribution; and (2) the partition’s complexity, which is propor-

tional to its size. A partition is strongly ML-optimal when it also satisfies a

refinement that essentially imposes continuity on the classification of zero-

probability contingencies. When the population-level mixed strategy always

assigns best-replies to beliefs induced by (strongly) ML-optimal partitions,

we have a (strong) ML equilibrium.

The paper’s main message is that the equilibrium criterion that penal-

izes complex beliefs can drastically limit the scope for cooperation in the

dynamic trust game, for the two reasons mentioned above. Cooperative be-

havior relies on the threat to lower the cooperation rate following defection.

When the cooperation rate is high, this means that the threat is rarely re-

alized. A preference for simple beliefs can lead to grouping such rare events

with more frequent ones, thus destroying the incentive to cooperate. The

same preference can also lead players to assign the same belief to different

contingencies at which the actual strategy prescribes similar behavior. Yet,

distinguishing between these contingencies may be crucial for maintaining

equilibrium incentives.

In Section 3, I provide full characterization of the maximal cooperation

rate that can be sustained in equilibrium for simple specifications of the

model. In particular, I demonstrate that the ML-optimality has more dras-

tic implications than an alternative requirement that beliefs are measurable

w.r.t a small partition. Another unusual effect is that lower costs of co-

operative behavior can actually make it harder to sustain cooperation in
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equilibrium. In Section 4, I present necessary conditions on the sustainabil-

ity of positive cooperation rates in strong ML equilibrium. An immediate

corollary is that for a fixed complexity cost, the sustainable rate of coop-

eration vanishes as the number of payoff states grows. In this sense, trust

between ML algorithms is harder to achieve in complex environments.

Related literature

The model in this paper synthesizes ideas from two strands in the behav-

ioral game theory literature, and applies them to the question of sustaining

cooperation in long-run interactions.

First, Jehiel and Mohlin (2024) and Jehiel and Weber (2024) take Jehiel’s

(2005) notion of Analogy-Based Expectations Equilibrium, which captures

strategic behavior under coarse beliefs, as a starting point. They then apply

basic ideas from the ML literature to endogenize the analogy partitions that

underlie players’ coarse equilibrium beliefs. In Jehiel and Mohlin (2024),

partition cells are shaped by an exogenous notion of similarity between con-

tingencies. However, they also respond to the equilibrium frequency of con-

tingencies – in the spirit of the bias-variance trade-off that is fundamental

to the ML literature – such that infrequent contingencies are more likely

to be grouped together.1 In Jehiel and Weber (2024), which is the closest

precedent for MLEQ, partition size is fixed at some K, and stability of par-

titions is determined by (local or global) minimization of MSPE. The global

version of the solution concept in Jehiel and Weber (2024) can be viewed

as a variant of MLEQ, in which the cost of a partition is 0 when its size is

weakly below K, and ∞ above it.

Second, Spiegler (2002,2004,2005), Eliaz (2003) and Maenner (2008) in-

troduced the idea that players use simplicity as a belief-selection criterion

in dynamic games. The solution concepts defined in these papers capture

the idea that an Occam’s Razor principle may rule out off-path threats as

part of the explanation of opponents’behavior. Unlike the present paper,

these concepts involved deterministic beliefs in strategies that take the form

of finite automata, and employed complexity measures that rely on this rep-

resentation, following the tradition of Rubinstein (1986).

As mentioned earlier, the question of how the use of ML algorithms

1Mohlin (2014) studies single-agent decision-making with endogenous formation of
coarse beliefs based on MSPE minimization.
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affects collusive behavior in dynamic games has received much attention re-

cently. This rapidly growing literature has entirely focused on model free,

reinforcement-learning-based algorithms; in this sense, it is orthogonal to the

present paper. Therefore, here I make do with mentioning a handful of pa-

pers. Calvano et al. (2020) used numerical experiments to demonstrate that

a repeated oligopolistic pricing game leads to collusive behavior by players

who follow a reinforcement-learning model known as Q-learning. Hansen et

al. (2021), Banchio and Mantegazza (2022) and Brown and Mackay (2023)

extended the numerical mode of analysis to other games, and also made

progress in terms of analytical characterizations. Waizmann (2024) stud-

ied an interaction between a long-run player who obeys Q-learning and a

sequence of rational short-run players.2

Finally, Danenberg and Spiegler (2024) studied the dynamic trust game

to illustrate a solution concept according to which players form beliefs by

extrapolating naively from representative finite samples drawn from the equi-

librium distribution.

2 A Model

Time is discrete and infinite: t = 0, 1, 2, 3, .... At each period t, a distinct

player (also denoted t) chooses an action at ∈ {0, 1}. Player 0 is a dummy

whose action is exogenously random. For every t > 1, player t’s payoff only

depends on his action and the action taken by the subsequent player t + 1.

Specifically, the payoff function is ut(at, at+1) = at+1 − θat, where θ ∈ (0, 1)

is publicly observed and drawn uniformly from the set Θ = {θ1, ..., θn} at
period 0. Thus, for any given θ, the infinite-horizon game is an overlapping-

generations Prisoner’s Dilemma with complete information. Each player

t > 1 only observes θ and at−1 prior to taking his action. I refer to at−1 as

the observed history at period t, and use ht to denote it. Let H = {0, 1}
denote the set of possible observed histories. I refer to a pair (θ, h) as a

contingency.

I will be interested in symmetric strategy profiles, where all players t > 1

obey the same mixed strategy σ, such that σ(a | θ, ht) is the probability that
2An older literature in evolutionary game theory examined repeated games when play-

ers use reinforcement learning to adapt their actions over time – e.g., see Bendor et al.
(2001).
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each player t > 1 plays a in the contingency (θ, ht). I adopt a population

interpretation of σ. I often use the shorthand notation σ(θ, h) for σ(1 | θ, h).

Under the belief that player t + 1 follows a strategy σ̂, player t’s expected

payoff from playing a is σ̂(θ, a)− θa. Therefore, a = 1 (0) is a best-reply to

σ̂ if σ̂(θ, 1)− σ̂(θ, 0) is weakly above (below) θ.

For every payoff state θ, a strategy σ induces a two-state Markov process

over observed histories, where the probability of transition from ht to ht+1 is

σ(ht+1 | θ, ht). The long-run frequency of a = 1 is the invariant probability

of h = 1 induced by the Markov process. The joint long-run distribution

pσ ∈ ∆(Θ×H) induced by σ is:

pσ(θ, 1) =
σ(θ, 0)

n[σ(θ, 0) + 1− σ(θ, 1)]

and pσ(θ, 0) = 1
n
− pσ(θ, 1). We say that σ induces a positive cooperation

rate in θ if pσ(θ, 1) > 0. The overall cooperation rate under σ is
∑

θ pσ(θ, 1).

Benchmark: Symmetric Nash equilibrium

As usual, there is a Nash equilibrium in which players never exhibit trust:

σ(θ, h) = 0 for every (θ, h). Let us explore other symmetric equilibria. Fix

the strategy σ. If σ(θ, 1) − σ(θ, 0) > θ (< θ) for some θ, then any player’s

unique best-reply at θ is a = 1 (a = 0), regardless of his observed history

– but this contradicts the optimality of σ(θ, 0) < 1 (σ(θ, 1) > 0). However,

if σ(θ, 1) − σ(θ, 0) = θ, then players are always indifferent between the two

actions, such that adhering to σ is consistent with best-replying.

It follows that any σ that satisfies σ(θ, 1) − σ(θ, 0) = θ for every θ is a

symmetric Nash equilibrium strategy. In particular, we can set σ(θ, 1) = 1

and σ(θ, 0) = 1− θ for every θ, such that the induced long-run distribution
pσ satisfies pσ(θ, 1) = 1/n for every θ – i.e., players fully cooperate in

equilibrium. �

Let us now introduce the novel model of equilibrium belief formation,

which draws inspiration from the idea that beliefs are extrapolated from

historical data using ML methods. Fix the strategy σ and its induced long-

run distribution pσ. Let Π be a partition of Θ ×H. Let π(θ, h) denote the

partition cell that includes (θ, h). A cell π ∈ Π is non-null if pσ(θ, h) > 0 for
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some (θ, h) ∈ π. Denote

pσ(π) =
∑

(θ,h)∈π

pσ(θ, h)

The representative strategy of a non-null cell π ∈ Π is

σ̂(π) =
∑

(θ,h)∈π

pσ(θ, h)

pσ(π)
σ(θ, h)

This is the expected strategy conditional on being in π, where the expecta-

tion is taken w.r.t pσ. When Π is fixed and there is no risk of confusion, I

will use the notation σ̂(θ, h) as a shorthand for σ̂(π(θ, h)).

Define the function

Vc,σ(Π) = c · |Π|+
∑
(θ,h)

pσ(θ, h)[σ̂(π(θ, h))− σ(θ, h)]2

where c > 0 is a constant capturing the cost of belief complexity.

In the spirit of machine-learning classification algorithms, Vc,σ trades off

two quantities: (1) A classification’s predictive accuracy, represented by the

second term in the objective function, which is simply the mean squared

prediction error (MSPE) of the representative strategy induced by the par-
tition; and (2) the classification’s complexity, measured by the partition size.

Definition 1 (ML-optimality) A partition Π is ML-optimal w.r.t pσ if it

minimizes Vc,σ(Π).

Definition 2 (ML Equilibrium) A strategy-partition pair (σ,Π) is an ML

equilibrium if: (i) Π is ML-optimal w.r.t pσ; and (ii) if σ(a | θ, h) > 0, then

a is a best-reply to σ̂(π(θ, h)).

Thus, in ML Equilibrium (MLEQ in short), players’strategy prescribes

best-replies to a belief σ̂, which in turn is induced by anML-optimal partition

w.r.t the long-run distribution induced by the players’strategy.

It is clear that if we assumed c = 0, then an ML-optimal Π would be

maximally fine, such that σ̂(π(θ, h)) = σ(θ, h) for every (θ, h), and MLEQ
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would collapse to symmetric mixed-strategy Nash equilibrium. We will see

that when c > 0, MLEQ departs from Nash equilibrium in significant ways.

Clearly, the zero-trust strategy σ(θ, h) = 0 for every (θ, h) is consistent

with MLEQ. To see why, note that under this σ, players never vary their

behavior with the contingency. As a result, a degenerate partition of size 1

induces zero MSPE, hence it is trivially ML-optimal. This partition induces

σ̂(π(θ, h)) = 0 for every (θ, h), such that players’unique best-reply is a = 0,

as postulated. Our main problem will be to explore the possibility of SMLEQ

with positive cooperation rates.

The following simple property of ML-optimal partitions will be applied

repeatedly in the sequel.

Lemma 1 Suppose Π is ML-optimal w.r.t pσ. Then, the following inequality

holds for every two cells π, π′ ∈ Π:

pσ(π)pσ(π′)

pσ(π) + pσ(π′)
(σ̂(π)− σ̂(π′))

2 ≥ c (1)

The L.H.S of (1) represents the MSPE increase when we deviate from

Π to a new partition that merges the cells π and π′ into a single cell. The

formula’s derivation appears in texts on clustering algorithms – e.g., see

Kaufman and Rousseeuw (1990, pp. 230-231).3 The R.H.S of (1) is the

complexity-cost reduction that merging the two cells brings. ML-optimality

requires the former to be weakly above the latter.

Corollary 1 Suppose Π is ML-optimal w.r.t pσ. Then, σ̂(π) 6= σ̂(π′) for

every distinct π, π′ ∈ Π.

This corollary immediately follows from Lemma 1. If σ̂(π) = σ̂(π′), then

we can merge the cells π and π′ into one cell, thus lowering the partition’s

complexity without changing its MSPE.

3It is easy to derive it using the variance decomposition formula.

9



Optimal assignment and Jehiel and Weber (2024)

The definition of MLEQ is closely related to the notion of Clustered Analogy-

Based Expectations Equilibrium (Jehiel and Weber (2024)). In both cases,

players’equilibrium beliefs are extrapolated from the objective distribution

via an ML-inspired procedure. There are two differences. First, Jehiel and

Weber examine static games, where the objective distribution over contin-

gences is exogenous. In contrast, the present game is dynamic, and so the

objective distribution over Θ×H is endogenously induced by the equilibrium

strategy. Second, Jehiel and Weber fix the partition size, whereas partition

size in the present model is variable and traded off against the prediction

error the partition induces. The significance of these two differences will be

clarified by the examples in the next section.

Nevertheless, we will be able to make use of a simple observation due to

Jehiel and Weber (2024).

Definition 3 (Optimal assignment) A contingency (θ, h) is optimally as-

signed w.r.t (σ,Π) if π(θ, h) ∈ arg minπ∈Π |σ̂(π)− σ(θ, h)|.

Remark 2 Suppose that Π is ML-optimal w.r.t pσ. If pσ(θ, h) > 0, then is

optimally assigned w.r.t (σ,Π).

This result is adapted from Lemma 1 in Jehiel and Weber (2024, Ap-

pendix B). It means that under an ML-optimal partition, every contingency

in the support of pσ is assigned to a partition cell having the nearest rep-

resentative strategy. This is not a trivial observation, given that reassign-

ing contingency from one cell to another may alter the cells’representative

strategies. Jehiel and Weber’s result is adapted to the present setting. First,

partition size is variable in the present paper, whereas it is fixed in Jehiel and

Weber (2024). However, it is clear that if a partition is ML-optimal, then it

also minimizes the mean squared prediction error among all partitions that

share its size. Second, while Jehiel and Weber can assume w.l.o.g that all

contingencies have positive probability, this is not guaranteed in the present

context because pσ is endogenous. Motivated by this observation, I present

the following definition, which extends the optimal assignment property to

zero-probability contingencies.
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Definition 4 (Strong ML-optimality) A partition Π is strongly ML-optimal

w.r.t pσ if it is ML-optimal w.r.t pσ, and if every contingency is optimally

assigned w.r.t (Π, σ).

Definition 5 (Strong MLEQ) A MLEQ (σ,Π) is strong if Π is strongly

ML-optimal w.r.t pσ.

In what follows, I use the abbreviation SMLEQ to describe a strong MLEQ.
In Jehiel and Weber (2024), the optimal assignment property is related

to the variant on their solution concept, in which partitions are not required

to minimize mean squared prediction error, but instead contingencies are

required to be optimally assigned. Partitions that satisfy this criterion can

be obtained via a simple iterative procedure, known as Lloyd’s algorithm

(Lloyd (1975)). By contrast, finding an ML-optimal partition (even when

we hold the partition size fixed) is a computationally hard problem.

Discussion

I conclude the section with a discussion of two aspects of the model. First,

mixed strategies are crucial for the dynamic trust game. As we saw, coop-

eration cannot be sustained in symmetric pure-strategy Nash equilibrium.

This is due to the combination of the game’s sequential-move and bounded-

recall aspects. However, with mixed strategies, any strategy σ that satisfies

the indifference condition σ(θ, 1)− σ(θ, 0) = θ for every θ is consistent with

Nash equilibrium. Thus, with mixed strategies, Nash equilibrium poses no

restriction on the ability to sustain long-run cooperation. As we will see,

indifference conditions continue to play a key role in the analysis of MLEQ.

Second, the notion of ML-optimality imposes a penalty on complex beliefs

even though the MSPE is calculated w.r.t the actual long-distribution pσ
over contingencies. In practice, the underlying rationale for ML methods

that explicitly penalize complexity is that empirical fit is calculated against

a finite sample, and therefore penalizing complexity is required to mitigate

over-fitting. When the sample is infinite (which is implicitly the case in our

model), this rationale vanishes.

Therefore, the appropriate way to interpret the preference for simple be-

liefs in MLEQ is that it is a tractability-motivated reduced form of a more
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elaborate model in which players form their beliefs on the basis of finite sam-

ples drawn from the endogenous distribution. Danenberg and Spiegler (2024)

is an example of such a more elaborate model, albeit without a simplicity-

seeking component. Note, however, that incorporating finite samples into

the present model would not only make it less tractable, but also clash with

the central role of the indifference condition that characterizes players’be-

liefs. When players form beliefs according to a finite sample, their beliefs

will almost surely generate a strict preference for one action or another, and

this will destroy the incentive to play a history-dependent strategy – which

is weak and relies on indifferences in our model. Thus, combining the incen-

tive structure of the dynamic trust game with a belief-formation model that

relies on finite samples is challenging.

3 Examples

In this section I present two examples that illustrate MLEQ and demonstrate

how the penalty on complex beliefs, inherent in the notion of ML-optimality,

constrains the ability to sustain trust in MLEQ.

3.1 Example I: n = 1

This is the simplest specification of the model. When there is only one

cost value θ ∈ (0, 1), there are only two possible contingencies, hence a

partition size of 2 induces rational expectations, as the partition isolates

each contingency in a separate cell. In contrast, when the partition size is

1, both contingencies are in the same cell, hence σ̂(θ, 1) = σ̂(θ, 0). But this

means that σ̂(θ, 1)− σ̂(θ, 0) < θ, such that the only best-reply to σ̂ is a = 0.

It follows that the only way to sustain trust in MLEQ is with the fine

partition of size 2. In this case, σ̂(θ, h) = σ(θ, h) for every h, such that

in MLEQ, equilibrium, σ(θ, 1) − σ(θ, 0) = θ, as in Nash equilibrium. The

only additional requirement is that the fine partition is ML-optimal. This

requirement holds if and only if the inequality (1) is satisfied. Since pσ(θ, 1)+

pσ(θ, 0) = 1, this inequality is reduced to

pσ(θ, 1)pσ(θ, 0) · (σ(θ, 1)− σ(θ, 0))2 ≥ c
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Plugging the formula for pσ(θ, h) and the equilibrium condition σ(θ, 1) −
σ(θ, 0) = θ, we obtain the following condition for σ to be consistent with

equilibrium:
(σ(θ, 1)− θ)(1− σ(θ, 1))

(1− θ)2
θ2 ≥ c (2)

It can be easily checked that if c > θ2/4, there exists no solution to (2). Thus,

a necessary and suffi cient condition for the existence of MLEQ that exhibit

trust is c ≤ θ2/4. When the condition holds, the maximally cooperative

equilibrium strategy is given by the value of σ(θ, 1) ≥ (1 + θ)/2 that solves

(2) bindingly (and then σ(θ, 0) = σ(θ, 1) − θ). Importantly, this value is

bounded away from 1. In particular, when c = θ2/4, σ(θ, 1) = (1+θ)/2 such

that pσ(1) = 1
2
. Thus, the penalty on complex beliefs implies a limit on the

amount of trust that can be sustained in MLEQ

3.2 Example II: n = 2

Suppose now that Θ = {θ1, θ2}. The following result characterizes the max-
imal amount of cooperation that can be sustained in MLEQ under certain

restrictions on the parameter values.

Proposition 1 Let θ2, θ1 >
1
2
and c ∈ (1

8
, 1

4
). Then, any MLEQ that exhibits

a positive cooperation rate in some state θ must satisfy |Π| = 2; pσ(θ, 1) ≤
θ2/(1 + θ2); and pσ(θ′, 1) = 0 in θ′ 6= θ. If θ2 <

√
c/(1−

√
c), cooperation in

state θ is unsustainable. If θ2 ≥
√
c/(1−

√
c), the upper bound on pσ(θ, 1))

is sustainable.

Proof. As before, a SMLEQ (σ,Π) can sustain trust with positive proba-

bility only if |Π| > 1. Let us distinguish between two cases.

Case 1: |Π| ≥ 3.

W.l.o.g, assume σ̂(θ1, 1) − σ̂(θ1, 0) = θ1. Since θ1, θ2 >
1
2
, σ̂(θ1, 0) < 1

2
.

If players exhibit trust with positive probability in θ2, then σ̂(θ2, 0) < 1
2
as

well; otherwise, σ̂(θ2, 0) = 0. In either case, |σ̂(θ1, 0)− σ̂(θ2, 0)| < 1
2
.

Let us consider two sub-cases. First, suppose σ̂(θ1, 0) 6= σ̂(θ2, 0), such

that (θ1, 0) and (θ2, 0) belong to different partition cells. Note that αβ/(α+
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β) < 1
2
for every α, β ∈ [0, 1]. It follows that

pσ(π(θ1, 0))pσ(π(θ2, 0))

pσ(π(θ1, 0)) + pσ(π(θ2, 0))
(σ̂(θ1, 0)− σ̂(θ2, 0))2 <

1

8
< c

in violation of (1). Second, suppose σ̂(θ1, 0) = σ̂(θ2, 0). Then,

|σ̂(θ2, 1)− σ̂(θ1, 1)| = |σ̂(θ2, 0) + θ2 − σ̂(θ1, 0)− θ1|
= |θ2 − θ1|

<
1

2

such that

pσ(π(θ1, 1))pσ(π(θ2, 1))

pσ(π(θ1, 1)) + pσ(π(θ2, 1))
(σ̂(θ1, 1)− σ̂(θ2, 1))2 <

1

8
< c

in violation of (1). �

Case 2: |Π| = 2.

We will first rule out partitions that consist of two equally sized cells:

(i) Suppose Π consists of the cells {(θ1, 0), (θ2, 0)} and {(θ1, 1), (θ2, 1)}.
Then, σ̂(θ1, h) = σ̂(θ2, h) for both h = 0, 1. However, this is inconsistent

with equilibrium. To see why, note first that if σ̂(θ, 1)− σ̂(θ, 0) > θ for some

θ, then we must have in equilibrium that σ(θ, 1) = σ(θ, 0) = 1. But then, by

Remark 2, both (θ, 1) and (θ, 0) should be assigned to the cell with the high-

est σ̂, a contradiction. In the same manner, we can rule out the possibility

that σ̂(θ, 1)− σ̂(θ, 0) < θ for some θ. It follows that σ̂(θ, 1)− σ̂(θ, 0) = θ for

both θ, a contradiction. Thus, we can rule out this particular partition.

(ii) Now suppose Π consists of the cells {(θ1, 1), (θ1, 0)} and {(θ2, 1), (θ2, 0)}.
Then, σ̂(θ, 1) = σ̂(θ, 0) for both θ. The unique best-reply against σ̂ is to play

a = 0, contradicting the assumption that the equilibrium sustains trust.

(iii) Finally, the partition that consists of {(θ1, 1), (θ2, 0)} and {(θ2, 1), (θ1, 0)}
implies σ̂(θ, 0) > σ̂(θ, 1) for some θ, thus making a = 0 the unique best-reply

to σ̂ at θ. But then σ(θ, 1) = σ(θ, 0) = 0, contradicting the assignment of

(θ, 1) and (θ, 0) to different cells.
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It follows that if Π is consistent with MLEQ, one of its two cells must

be a singleton {(θ, h)}. This means that for θ′ 6= θ, (θ′, 1) and (θ′, 0) are

assigned to the same cell, which (as we have seen) means that in equilibrium,

σ(θ′, 1) = σ(θ′, 0) = 0. Suppose that this cell also contains (θ, 1), such

that the other, singleton cell is {(θ, 0)}. It follows that σ̂(θ, 0) = σ(θ, 0).

Equilibrium requires that σ̂(θ, 1) − σ̂(θ, 0) = θ, hence σ̂(θ, 1) > σ̂(θ, 0).

By Remark 2, ML-optimality requires that since σ(θ′, 1) = σ(θ′, 0) = 0 <

σ̂(θ, 0), (θ′, 0) and (θ′, 1) should be bundled together with (θ, 0) rather than

(θ, 1), a contradiction.

The only remaining option is that Π consists of two cells that take the

form {(θ′, 1), (θ′, 0), (θ, 0)} and {(θ, 1)}, such that

σ̂(θ, 1) = σ(θ, 1)

σ̂(θ, 0) =
pσ(θ, 0)

1
2

+ pσ(θ, 0)
σ(θ, 0)

Equilibrium requires σ(θ, 1)− σ̂(θ, 0) = θ. ML-optimality requires that if we

move (θ, 0) out of its cell and into the same cell as (θ, 1), the mean squared

error will not decrease:

1
2
· pσ(θ, 0)

1
2

+ pσ(θ, 0)
(σ(θ, 0)− 0)2 ≤ pσ(θ, 0) · pσ(θ, 1)

pσ(θ, 0) + pσ(θ, 1)
(σ(θ, 1)− σ(θ, 0))2 (3)

Plugging the expressions for pσ(θ, h) and the equilibrium requirement σ(θ, 1)−

σ̂(θ, 0) = θ into (3), and with a bit of algebra, we can derive the following

tight upper bound:

pσ(θ, 1) ≤ θ2

1 + θ2

This inequality is binding when (3) is binding.

The only remaining constraint is that the putative equilibrium is robust

to deviating from the two-cell partition to the degenerate partition:

pσ(π(θ, 1))pσ(π(θ, 0))

pσ(π(θ, 1)) + pσ(π(θ, 1))
(σ̂(θ, 1)− σ̂(θ, 0))2 = pσ(θ, 1)(1− pσ(θ, 1))θ2 ≥ c
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Since pσ(θ, 1) < 1
2
, the L.H.S of this inequality holds only if it holds under

the upper bound on pσ(θ, 1), which happens if and only if

c ≤ θ4

(1 + θ2)2
(4)

This inequality is equivalent to θ2 ≥
√
c/(1−

√
c).

The derivation does not take a stand on whether θ is θ1 or θ2. Since

θ2 > θ1, we can see that the largest possible equilibrium probability of h = 1

is θ2
2/(1 + θ2

2). Thus, a lower cost of cooperation leads to a lower upper

bound on the long-run probability of cooperative behavior, and also makes

it harder to sustain cooperation at all.

In the n = 1 example, the only possible deviation in the Π dimension was

merging the contingencies h = 1 and h = 0 into one cell, thus destroying

the incentive to cooperate. When n = 2, there is an additional possible

deviation, which merges the contingencies (θ1, h) and (θ2, h
′) into one cell,

thus potentially destroying a distinction between the two payoff states that

is necessary to maintain the incentive to cooperate. Proposition 1 reflects

this additional force. As a result, the scope for cooperation is lower than in

the n = 1 case, where it is possible to sustain pσ(1) ≥ 1
4
whenever c ≤ θ2/4.

Condition (4), which is necessary for sustaining cooperation when n = 2, is

more stringent.

Under the restrictions on (θ1, θ2, c), the partition size in cooperation-

sustaining MLEQ is 2. However, by itself, this restriction on |Π| implies a
weaker constraint on cooperation rates. For example, suppose θ2 ' θ1 >

1
2
,

and consider the partition Π = {{(θ1, 0), (θ2, 0)}, {(θ1, 1), (θ2, 1)}}. Con-
struct the strategy σ(θ2, 1) = σ(θ2, 0) = σ(θ1, 0) = 0, σ(θ1, 1) = θ1. Then,

pσ(θ1, 1) = pσ(θ2, 0) = 1
2
, such σ̂(θ1, 1) = σ̂(θ2, 1) = θ1 while σ̂(θ1, 0) =

σ̂(θ2, 0) = 0. Players’behavior is a best-reply to this belief. The strategy

induces an overall rate of cooperation of θ1/2, which is above the MLEQ

upper bound of θ2
2/(1 + θ2

2) because θ2 ' θ1.
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4 Results

The first result establishes a necessary condition for SMLEQ-sustaining pos-

itive cooperation rates in m payoff states. For a fixed complexity cost, there

is an upper bound on the number of payoff states in which cooperation can

be sustained in SMLEQ. The bound is not tight, because it is calculated

without taking into account the endogeneity of pσ.

Proposition 2 Suppose 2cm3 > 1. Then, for generic Θ, there exists no

SMLEQ that induces positive cooperation rates in m payoff states.

Proof. Consider an SMLEQ (σ,Π) in which pσ(θ, 1) > 0 for m payoff states

θ. The proof proceeds stepwise.

Step 1: If pσ(θ, 1) > 0, then σ̂(θ, 1)− σ̂(θ, 0) = θ.

Proof : Consider a payoff state θ for which pσ(θ, 1) > 0. Suppose σ̂(θ, 1)−
σ̂(θ, 0) < θ. Then, the unique best-reply at θ is a = 0. Hence, σ(θ, 1) =

σ(θ, 0) = 0 in equilibrium, contradicting the assumption that pσ(θ, 1) >

0. Now suppose σ̂(θ, 1) − σ̂(θ, 0) > θ. Then, the unique best-reply at θ

is a = 1. Hence, σ(θ, 1) = σ(θ, 0) = 1 in equilibrium. By the optimal

assignment property of SMLEQ, (θ, 1) and (θ, 0) must both be assigned to

arg maxπ∈Π σ̂(π), such that σ̂(θ, 1) = σ̂(θ, 0), a contradiction. �

Step 2: For generic Θ, if pσ(θ, 1) > 0 for m payoff states θ, then |Π| > m.

Proof : Consider a payoffstate θ for which pσ(θ, 1) > 0. By Step 1, σ̂(θ, 1) 6=
σ̂(θ, 0), which by Corollary 1 means that π(θ, 1) 6= π(θ, 0). Construct a non-

directed graph whose nodes correspond to the cells in Π, such that π and

π′ are linked if there is θ for which pσ(θ, 1) > 0 such that π(θ, h) = π and

π(θ, 1− h) = π′ for some h. Note that by definition, the graph has m edges.

Suppose π(θ, 1) and π(θ, 0) are linked. Then, by Step 1, σ̂(θ, 1)−σ̂(θ, 0) =

θ. Suppose the graph contains an additional, indirect path between π(θ, 1)

and π(θ, 0). By Step 1, this means that there is a sequence of payoff states

θ1, ..., θK , such that θ =
∑K

k=1 θ
k = θ. For generic Θ, this requirement fails

to hold. It follows that if two graph nodes are linked, there is no additional

indirect path between them (in other words, the link is a bridge). It follows

that the graph must be a forest (i.e., every connected graph component is a

tree), hence it has at least m+ 1 nodes. It follows that |Π| > m. �
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Step 3: Formulating an auxiliary max-min problem

Proof : We have established that Π consists of K ≥ m + 1 cells, each

with its own distinct σ̂. Enumerate the partition cells as π1, ..., πK . Denote

pi = pσ(πi) and σ̂i = σ̂(πi). By (1), (σ,Π) is an MLEQ only if

c ≤ min
i 6=j

pipj
pi + pj

(σ̂i − σ̂j)2

for every distinct i, j ∈ {1, ..., K}. By definition, the R.H.S. of this inequality
is bounded from above by

max
p∈∆{1,...,K}, σ̂∈[0,1]K

min
i 6=j

pipj
pi + pj

(σ̂i − σ̂j)2 (5)

Without loss of generality, let 0 ≤ σ̂1 < σ̂2 < · · · < σ̂K ≤ 1. For

every k = 1, ..., K − 1, denote qk = σ̂k+1 − σ̂k. Denote p = (pk)k=1,...,K and

q = (qk)k=1,...,K−1. By definition, (5) is weakly below

max
p,q

min
k=1,...,K−1

pkpk+1

pk + pk+1

q2
k (6)

By definition, p ∈ ∆{1, ..., K} is a probability n-vector, whereas qk > 0 for

every k = 1, ..., K − 1 and
∑

k qk ≤ 1. Since (6) is increasing in q, we can

take (as far as the solution of this max-min problem is concerned) the latter

constraint to be binding, such that q ∈ ∆{1, ..., K − 1}. �

Step 4: The value of (6) is strictly below 1/2(K − 1)3.

Proof: Let us break the max-min problem into two steps:

max
p

(
max
q

min
k=1,...,K−1

pkpk+1

pk + pk+1

q2
k

)
As a first step, fix p. For every k = 1, ..., K − 1, denote

Ak =

√
pk pk+1

pk + pk+1

Since k is selected to minimize (Akqk)
2, it is clear that the solution to the

parenthetical max-min problem maxq mink(Akqk)
2 equalizes Akqk across all
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k, such that

qk =
1
Ak∑K−1
j=1

1
Aj

and the max-min value is
1(∑K−1

j=1
1
Aj

)2 (7)

In the procedure’s second step, choose p to maximize this value. This is

equivalent to choosing p to minimize

K−1∑
k=1

√
1

pk
+

1

pk+1

(8)

This expression is strictly convex. It is also symmetric between p1 and pK , as

well as across all interior components p2, ..., pK−1. Therefore, the expression’s

unique minimizer has full support and satisfies p1 = pK . Construct an

alternative probability vector p∗ = (p1, ..., pK−1) defined as follows:

p∗k =
pk∑K−1
j=1 pj

Then, we can rewrite (8) as

1√∑K−1
j=1 pj

(
K−2∑
k=1

√
1

p∗k
+

1

p∗k+1

+

√
1

p∗K−1

+
1

p∗1

)

>
K−2∑
k=1

√
1

p∗k
+

1

p∗k+1

+

√
1

p∗K−1

+
1

p∗1

The latter expression is strictly convex and symmetric. Therefore, its unique

minimizer is the uniform distribution, yielding a minimal value of (K −
1)
√

2(K − 1). It follows that (7) is strictly below 1/2(K − 1)3. �

Step 5: Completing the proof

It follows from Steps 3 and 4 that (5), and therefore also c, are below 1/2(K−
1)3. Since K ≥ m + 1, this contradicts the assumption that 2cm3 > 1. We

can conclude that there is no SMLEQ with positive cooperation rates in m

payoff states.
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The intuition behind the result is as follows. First, in order to sustain

cooperation in m payoff states, players’beliefs must be suffi ciently complex

to create the distinctions that sustain cooperation incentives. Specifically, I

show that the equilibrium partition must have at least m+ 1 cells.

Second, as a partition gets larger, the probability of individual cells goes

down on average, and so does the average distance between cells’average

cooperation probability. These two quantities are inversely proportional to

m + 1 and (m + 1)2, respectively. As m grows larger, a deviation in belief

space that merges two cells of a putative equilibrium partition becomes more

likely.

In this sense, an environment that is more complex in the sense of hav-

ing a larger n makes it harder to sustain equilibrium beliefs that make the

necessary distinctions between contingencies for maintaining the incentive

to cooperate.

Corollary 3 Fix c. As n → ∞, the overall cooperation rate in SMLEQ
converges to zero.

This result immediately follow from Proposition 2. Since the maximal

number of payoff states with positive cooperation rates is bounded from

above by 3
√
c, the fraction of these states becomes negligible as n grows

larger.

The following result exploits the endogeneity of pσ to derive a different

kind of limit on the ability to sustain cooperation in MLEQ.

Proposition 3 Fix c, n, and let σ be an SMLEQ strategy. Then, the prob-
ability of payoff states θ for which pσ(θ, 1) = 1

n
is at most 1

2
.

Proof. Suppose that pσ(θ, 1) = 1
n
for some payoff state θ. Then, we must

have σ(θ, 1) = 1 and σ̂(θ, 1)− σ̂(θ, 0) = θ (the latter was established in Step

1 of the proof of Proposition 2). Since pσ(θ, 0) = 0, SMLEQ implies that

(θ, 0) is assigned to a partition cell π that minimizes |σ̂(π)− σ(θ, 0)|. That
is, there must be some other contingency (θ′, h′) such that π(θ′, h′) = π(θ, 0)

and σ̂(π(θ, 1))− σ̂(π(θ, 0)) = θ.
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Now suppose pσ(θ′′, 1) = 1
n
for some other payoff state θ′′ 6= θ. Since

σ(θ′′, 1) = 1 = σ(θ, 1), SLMEQ implies that (θ′′, 1) and (θ, 1) are assigned

to the same partition cell (the one with the highest σ̂), such that σ̂(θ′′, 1) =

σ̂(θ, 1). Since we must also have σ̂(θ′′, 1) − σ̂(θ′′, 0) = θ′′ 6= θ, it follows

that (θ′′, 0) and (θ, 0) are assigned to different partition cells. By the same

argument as in the previous paragraph, there must be a contingency (θ′′′, h′′′)

such that π(θ′′′, h′′′) = π(θ′′, 0). But since (θ′′, 0) and (θ, 0) are assigned to

different cells, (θ′′′, h′′′) 6= (θ′, h′).

It follows that for every payoff state that exhibits full cooperation, there

must be a distinct payoffstate that exhibits less-than-full cooperation. There-

fore, the fraction of payoff states that exhibit full cooperation is at most 1
2
.

The logic behind this result is simple. If σ(θ, 1) = 1 for some θ, then

pσ(θ, 0) = 0. Strong MLEQ then requires the equilibrium partition to bundle

(θ, 0) with other non-zero-probability contingencies, which in turn means

that there is some other payoff state for which the cooperation rate is below

1. An additional argument establishes that this pairing must be different for

different payoff states, which implies the upper bound of 1
2
on the fraction

of states with full cooperation.

Comment : The objective meaning of c

The model in this paper treats c as a primitive, as if players have an intrinsic

taste for simple beliefs. However, under the ML interpretation, we should

view ML-optimality – and the role that c plays in it – as a reduced-form

formalization of an underlying bias-variance trade-off. This trade-off would

arise in a more elaborate model in which players do not observe σ directly,

but instead learn about it from a noisy sample.

Specifically, suppose that n = 1 and that for every h = 0, 1, players

observe x(h) = σ(h) + ε(h), where ε(h) is an independent noise term with

mean zero and variance v/pσ(h); v > 0 is a constant. The basic model would

correspond to the case in which v = 0. The assumption that the variance

is inversely proportional to pσ(h) is in the spirit of Danenberg and Spiegler

(2024): Players obtain a representative finite sample drawn from the ergodic

distribution over contingencies, such that the number of observations about

a contingency is proportional to its frequency.
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Fix a partition Π of H = {0, 1}. For every cell π ∈ Π, define σ̂(h)

as the expected value of x in π(h). As before, the MSPE it induces is

E(σ̂(h)− σ(h))2. Then, the MSPE induced by the fine partition is

pσ(0) · v

pσ(0)
+ pσ(1) · v

pσ(1)
= 2v

whereas the MSPE induced by the degenerate, coarse partition is

pσ(0)pσ(1)[σ(1)− σ(0)]2 + (pσ(0))2 · v

pσ(0)
+ (pσ(1))2 · v

pσ(1)

= pσ(0)pσ(1)[σ(1)− σ(0)]2 + v

It follows that even if there is no intrinsic preference for simple beliefs

and ML-optimality is entirely based on minimizing MSPE, the fine partition

is ML-optimal if

pσ(0)pσ(1)[σ(1)− σ(0)]2 ≥ v

This is the same criterion as in the basic model, except that the role of c in

the basic model is now played by the noise variance constant v.

I should emphasize that this exercise cannot be turned into a full-fledged

“foundation”for MLEQ. Apart from considerations of tractability and gener-

alizability, the fundamental diffi culty is that if players form beliefs according

to a finite sample with smooth noise, then they will almost always have a

strict best-replying action to their sample-based belief. This action is by

definition independent of the observed history. Yet, history-dependent be-

havior is crucial for sustaining cooperation in the dynamic trust game. This

is a limitation of this game as a metaphor for the long-run interactions with

ML-based beliefs it is meant to capture.

Nevertheless, this little exercise gives a sense of how we may want to

interpret the inequality in Proposition 2. It essentially a says that as the

numberm of payoffstates that exhibit cooperation grows, the variance of the

noise with which players observe σ should decrease at a rate of approximately

1/m3.
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5 Conclusion

The ML dilemma between what I described here as model-based vs. model-

free methods has occupied AI specialists (e.g., see Sutton and Barto (1998)

and Levine et al. (2020)), and involves technical considerations that are

far outside my expertise. Nevertheless, to the extent that ML methods

are applied to dynamic strategic decision-making – as is the case in such

domains as oligopoly pricing or autonomous driving – I hope that this paper

has made a valuable contribution to the discussion.

Model-based ML involves reducing the dimensionality of the environ-

ment’s representation. In game-theoretic contexts, this may take the form

of collapsing distinct contingencies into the same equivalence class. The basic

qualitative insight of this paper is that when this classification is guided by

trading off predictive success against model complexity, it may fail to make

the distinctions that sustain individual incentives to act cooperatively in a

long-run interaction. Successful long-run cooperation is sustained by coun-

terfactual (or at least rare) threats, yet their very rarity causes ML methods

that involve the fit-simplicity trade off to group them together with other

contingencies. This same trade-off causes similar beliefs to be grouped to-

gether, even when they imply radically different best-replying actions.

This paper used the dynamic trust game to offer various illustrations

of these two themes, and demonstrated that they drastically narrow the

scope for equilibrium long-run cooperation. Whether this conclusion has

broader lessons for the performance of model-based ML in dynamic strategic

interactions will hopefully be explored in future research.
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