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Abstract

An agent facing a binary choice uses sampling to learn about payoffs. Each sample

point carries Gaussian noise. The number of sample points about an alternative is

proportional to its choice frequency. The agent chooses the best-performing alternative

in the sample, ignoring sampling error. To account for sample-size endogeneity, we

introduce an equilibrium concept for stochastic choice. The equilibrium effect favors

the intrinsically inferior alternative, such that its choice frequency vanishes extremely

slowly with total sample size. We also analyze how choices vary with the coarseness of

the agent’s sampling data, and illustrate how to extend this approach to games.
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1 Introduction

Additive Random Utility (ARU) is probably the most familiar modeling approach to stochas-

tic choice (see Strzalecki (2023) for a pedagogical exposition). According to the ARU model,

each choice alternative a carries an intrinsic utility u(a). However, when the decision-maker

(DM) faces a choice between alternatives, she evaluates a by u(a) + ε, where ε represents

independently distributed noise. This noise term is commonly interpreted as non-systematic

population-wide variation in the motivations of DMs, or within a single DM across choice

situations. In both cases, ε represents uncertainty of an outside observer.

Another interpretation of ARU is that u(a) + ε represents a noisy signal obtained by the

DM herself, lacking direct access to her intrinsic valuation of each alternative. This process

may involve introspection — for instance, trying to retrieve past experiences from memory.

Alternatively, it may involve physical sampling of other agents’ experiences (asking friends,

reading product reviews). The DM naively extrapolates from her noisy signal: she regards

the signal as a perfect predictor of the intrinsic value of a and chooses the alternative that

maximizes u(a) + ε in her sample.

This interpretation of random choice harks back to Thurstone’s (1927) model of noisy

perception, according to which perceived stimulus is the sum of true stimulus and normally

distributed noise. In one of the examples that motivated Thurstone’s analysis, an agent

asked to identify the heavier of two objects generates Gaussian weight signals and picks the

object with the higher signal. The naive-sampling interpretation of ARU extends this idea

from perception of external objects to perception of subjective preferences. We refer to this

interpretation as naive sampling because it describes the DM as a “naive frequentist” who

obtains noisy additive signals of choice alternatives’ intrinsic value and takes these signals

at face value, neglecting sampling error.

However, this description raises a natural question: Shouldn’t alternatives that are chosen

more frequently generate more precise signals? Suppose the error term ε captures the noisy

outcome of an introspective process by which the DM tries to access the intrinsic value of

a choice alternative. Then, when the DM consumes an alternative more frequently, she is

likely to have an easier time retrieving memories of consumption experiences. Now consider

the physical-sampling interpretation. When an alternative is chosen more frequently in the

relevant population, the DM can draw on a bigger sample of peers’ experiences with this

alternative.

Under both interpretations, the variance of the error term should decrease with its pop-

ularity. This dependence creates a feedback effect: Choice frequencies depend on DMs’

subjective evaluations of alternatives, and yet these very evaluations are sensitive to choice
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frequencies. This feedback effect suggests a need for an equilibrium concept of single-agent

stochastic choice.

To capture this idea, we modify the standard ARU model. Conventionally, we assume

that the DM observes the value of each choice alternative with additive Gaussian noise.

We depart from the standard model by assuming that the variance of this noise depends

on the frequency with which x is chosen. Specifically, we consider a binary-choice setting,

in which the DM chooses between two alternatives, A and B. The DM obtains a sample

of size n, consisting of nq(A) and nq(B) observations about A and B, where q(z) is the

choice frequency of alternative z. Thus, the DM’s sample is representative. Each sample

point about alternative z generates an observed payoff u(z) + ε, where ε is an independent

draw from a normal distribution with mean zero and variance σ2. Thus, the DM’s Gaussian

signal for alternative z has mean u(z) and variance σ2/nq(z). In keeping with the “naive

frequentism” idea, the DM chooses the alternative with the highest average payoff in her

sample. In a representative sampling equilibrium (RSE), the choice frequencies that result

from this procedure match q.

Under the physical-sampling interpretation, representative sampling can be taken liter-

ally, modeling a form of experimentation in which the DM deliberately ensures that the com-

position of her sample matches the relevant population, somewhat in the manner of political

pollsters. However, we prefer to think of representative sampling as a “mean field” approxi-

mation of passive observational learning, where the DM faces a random sample drawn from

the equilibrium distribution. Under the introspective interpretation, representative sampling

captures an internal process of evaluation. As the DM becomes more familiar with an alter-

native, her introspective process generates a more precise signal. For both interpretations,

the representative-sampling approximation makes the model tractable while preserving the

feature that frequently chosen alternatives generate more precise signals.

For a concrete example of the introspective interpretation, consider an agent deciding

between red or white wine for dinner. Suppose the agent would derive greater expected

pleasure from drinking white wine. However, she does not know her taste for wine well

enough to recognize this. Instead, she relies on her personal memory of previous wine

experiences. These experiences are noisy due to variations in grape type, vintage, or dish

pairings. Importantly, the composition of the sample will reflect the agent’s previous choices:

if she tended to drink white wine in the past, she will have a more precise understanding of

her pleasure from this type of wine. The agent’s memory is bounded. As time goes by, she

accumulates new experiences and forgets others. In a steady state, the probability that the

agent opts for white wine should equal the historical frequency of choosing it. RSE captures

this notion of a steady state.
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As to the physical-sampling interpretation, for a concrete example think of an agent

choosing between two hotels. Prior to making her choice, the agent reads online reviews

or asks friends who visited one of the hotels about their experiences. Suppose that the

description of these experiences is complete, as if they happened to the agent herself (such

that we can abstract from the usual inferential difficulties of social learning). The noise

might be due to objective variation in service quality at the hotels. The sample size for each

hotel will depend on its popularity, such that the agent will have a more precise impression

of more popular hotels.

The key insight of our model is that naive inference from representative samples in-

troduces an equilibrium force that favors inferior alternatives. In the wine example, the

assumption that red wine is intrinsically inferior (according to the DM’s true underlying

taste) leads the DM to have fewer sample points about red wine, which makes her assess-

ment of red wine noisier. Since a noisy assessment favors an intrinsically inferior alternative,

we have an equilibrium effect that magnifies the choice frequencies of inferior alternatives.

After establishing existence, uniqueness, and monotonicity results for RSE, our main result

addresses the implications of this basic insight for how choice frequencies depend on the sam-

ple size n. The equilibrium force described above implies that not only does representative

sampling increase the equilibrium frequency of the inferior alternative relative to the rational

or uniform-sample benchmarks, but the rate with which this frequency vanishes with n is

extremely slow.

We also consider an extension of this binary-choice model, in which the DM has multiple

types, defined by their intrinsic utility difference between the two alternatives (all types

agree on the sign of this difference). The types are partitioned into “intervals”, such that

each type’s sample is restricted to the interval that includes it. This extension captures

cases in which an agent in a given situation only accesses data about similar situations. We

carry out comparative statics with respect to the coarseness of the partition. In particular,

we show that when the objective payoff difference between the two alternatives is not too

large, a finer partition leads to a higher overall equilibrium probability of choosing the

intrinsically inferior alternative. In terms of the wine example, if the DM shifts from a broad

consideration of all wines to more specific comparisons — e.g., French reds against French

whites — their likelihood of opting for the lesser-quality red wine increases, even when the

total sample size for each decision is held fixed.

Finally, we suggest how RSE can be extended from decision problems to games. We

illustrate this direction with the Prisoner’s Dilemma, and show that unlike the rational and

uniform-sample benchmarks, the favoring-inferior-alternatives effect of RSE leads to positive

cooperation rates in equilibrium.
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Related literature

Despite the intuitive appeal of the naive-sampling interpretation of ARU and its historical

connection to Thurstone (1927), it has not received much attention in the literature on

stochastic individual choice. For example, in Strzalecki (2023), the learning interpretation

of random choice focuses on dynamic sampling procedures that are more consistent with

Bayesian rationality.

Yet, the naive-sampling approach to random choice has been developed in other contexts.

Osborne and Rubinstein (1998) introduced the game-theoretic concept of S(K) equilibrium,

in which each player samples each available strategy K (independent) times and chooses

the best-performing strategy in her sample. Osborne and Rubinstein (2003) study a variant

on this concept (in the context of a voting model), in which each player best-replies to a

finite sample drawn from her opponents’ strategies. Spiegler (2006a,b) studied price compe-

tition models in which consumers evaluate products using the S(K) procedure. Sethi (2000)

formalized Osborne and Rubinstein’s dynamic interpretation of S(1) equilibrium.

Osborne and Rubinstein (1998, 2003) assumed that players regard their sample as a

noiseless estimate of the distribution from which it is drawn. This is what we referred to as

“naive frequentist” inference, which this paper assumes as well. Salant and Cherry (2020)

extended the sampling-based equilibrium approach to a more general class of statistical in-

ference procedures, and introduced new methods for analyzing equilibria. Unlike the present

paper, Salant and Cherry (2020) maintained Osborne and Rubinstein’s assumption that

sample size is an exogenous parameter.1

Naive-frequentist inference from random samples (which involves neglect of sampling er-

ror) is related to what Tversky and Kahneman (1971) called “the law of small numbers” —

namely, treating small samples as if they are perfectly representative of the distribution they

are drawn from. The idea that people take sample averages at face value and inadequately

incorporate sample size has received corroboration both in experimental settings (e.g., Or-

brecht et al. (2007)) and in studies of users’ responses to online reviews (e.g., de Langhe et

al. (2016)).2

The physical-sampling interpretation of our model links it to the literatures on word-of-

mouth learning (e.g., Ellison and Fudenberg (1995) or Banerjee and Fudenberg (2004)) and

learning in social networks (e.g., Golub and Jackson (2012)). Unlike this paper, both liter-

atures involve explicitly dynamic models. Like us, Banerjee and Fudenberg (2004) assume

1For a sampling-based game-theoretic solution concept that adheres to Bayesian rationality, see Goncalves
(2020).

2The observation that frequently used products lead to more precise information about their quality has
been considered from a very different perspective in the theoretical IO literature — e.g., see Shapiro (1983)
on the pricing of experience goods.
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that the process of social learning involves representative samples. However, they assume

that agents draw Bayesian inferences from noisy observations of their predecessors’ payoffs

(as well as their observed choices). An important distinction between our paper and these

works (and social-learning models in the tradition of Bikchandani et al. (1992) and Banerjee

(1992)), is that agents in our model do not draw inferences from observed choices as such.

2 Model

A DM faces a choice between two alternatives, denoted A and B. The DM’s type is t ∈ T ,

where T ⊂ R is a finite set. Let µ ∈ ∆(T ) represent a distribution over types in a large

population of agents facing the same choice problem. Denote the share of type t in the

population by µt. The DM’s objective expected payoff from choosing an alternative z ∈
{A,B} given her type t ∈ T is u(z, t).

Let qt(z) be the probability a DM of type t chooses z. The average frequency of choosing

z in the population is

q̄(z) =
∑
t∈T

µtqt(z) (1)

We will often use the abbreviated notation qt = qt(B) and q̄ = q̄(B).

In our model, qt is a consequence of agents’ attempt to learn their payoffs from samples. A

DM’s total sample size is a positive integer n. The DM’s estimate of u(z, t) is independently

and normally distributed as follows:

û(z, t) ∼ N

(
u(z, t),

σ2

nq̄(z)

)
(2)

where σ2 > 0 is the payoff variance of a sample point from any alternative.

Definition 1 A profile (qt)t∈T is a representative-sampling equilibrium (RSE) if for

every t ∈ T ,

qt = Pr(û(B, t)− û(A, t) > 0)

where this probability is calculated according to (2).

The idea behind this formulation is as follows. Before choosing an action, a DM of type

t samples the payoff realizations of each alternative. The alternatives’ representation in her

sample matches their choice frequencies among the types in the population. The DM is a

“naive frequentist”, taking sample outcomes at face value. That is, she regards the sample
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average û(z, t) as an accurate representation of her underlying average payoff from choosing

z, ignoring sampling error.

By the assumption that û(A, t) and û(B, t) are independent normal variables,

û(B, t)− û(A, t) ∼ N

(
u(B, t)− u(A, t),

σ2

nq̄(A)q̄(B)

)
(3)

Therefore, we can identify t with the mean of this distribution — i.e.,

t = u(B, t)− u(A, t)

such that t measures the DM’s underlying intrinsic preference for B over A. Furthermore,

it is clear from (3) that the value of σ can be normalized to 1 without loss of generality

(because we can rescale t). From now on, we set σ = 1. Consequently, the equilibrium

condition can be rewritten as

qt = Pr

[
N

(
0,

1

nq̄(1− q̄)

)
< t

]
for all t, or, equivalently,

qt = Φ
(
t
√
nq̄(1− q̄)

)
(4)

where Φ is the cdf of the standard normal distribution (we invoke this notation consistently

throughout the paper).

We will use (4) as our working definition of RSE in Section 3. This definition immediately

implies that in any RSE, a DM of type t chooses her objectively superior alternative (i.e.,

the z with the higher u(z, t)) with probability greater than 1
2
. It is not surprising that due

to sampling errors, the inferior alternative is also chosen with positive probability.

When q̄(z) = 0, û(z, t) is ill-defined because it involves infinite variance. To handle

this, we treat N(0,∞) as a well-defined distribution satisfying Pr(x ≤ c) = 1
2
for every

c. Consequently, the definition of RSE given by (4) is legitimate even when q̄(z) = 0.

Equilibrium choice probabilities will always be interior.

Yet, how big is the DM’s choice error? A central theme of this paper is that represen-

tative samples (coupled with naive-frequentist inference) magnify the probability of errors.

Specifically, when the average choice distribution is skewed (i.e., when q̄ is close to zero or

one), the variance of û(B, t) − û(A, t) is large, and this introduces an equilibrium counter-

force toward a less skewed distribution, namely larger choice errors. Section 3 will explore

the implications of this force.
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Comment: What does the DM observe?

Recall that one interpretation of û(z, t) is that it represents naive-frequentist inference from

a sample of other people’s choices. One way to make this interpretation consistent is to

assume that the DM has enough detail about each data point to learn what her payoff would

be if this were her own experience. Using our hotel example from the Introduction, each

sample point consists of a complete description of a friend’s consumption experience. Since

the experience contains random elements (room allocation, staffing), it is a noisy signal of

the DM’s own expected utility if she chooses the same hotel. However, since the DM has

access to the friend’s full experience, she knows what her payoff from that same experience

would be.

3 Analysis

We begin our analysis with a few elementary results.

Remark 1 An RSE exists.

Remark 2 Let q be an RSE. If t′ > t, then, qt′ > qt.

Both results are immediate consequences of (4). This equation defines a fixed point of a

continuous mapping from [0, 1]|T | to itself. Such a fixed point exists, by Brouwer’s fixed-point

theorem. Furthermore, fixing an equilibrium q, the R.H.S of (4) is strictly increasing in t,

and therefore qt must increase in t.

The following result establishes equilibrium uniqueness when B is the intrinsically supe-

rior alternative for all DM types.

Proposition 1 Assume t > 0 for every t ∈ T . Then, there is a unique RSE.

Finding conditions for equilibrium uniqueness when the sign of t is not constant is an

open problem.
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3.1 Convergence Properties

Consider the case of a single DM type — i.e., T ≡ {t}. Let t > 0, without loss of generality.

In this sub-section, we will use qt(n) to denote the RSE for type t and sample size n, in order

to highlight the role of n. It is uniquely given by

qt(n) = Φ
(
t
√

nqt(n)(1− qt(n))
)

(5)

Our task is to analyze the dependence of qt(n) on n, especially in comparison with uniform

sampling.

First, observe that qt(n) increases with n, by the same logic as Remark 2. The next result

shows that choice errors vanish as n tends to infinity.

Proposition 2 limn→∞ qt(n) = 1.

Now compare (4) with the case of a uniform sample, where each alternative is sampled n
2

times. This variant shares the sampling-based account of random choice, while suppressing

the idea that choice frequencies affect signal precision. In the uniform-sample case, the

probability of choosing B is given by

rt = Φ

(
t

2
n

1
2

)
(6)

This can be viewed as a normal approximation of Osborne and Rubinstein’s (1998) S(K)

procedure mentioned in the Introduction, where K = n/2.

Formula (6) has two noteworthy features. First, it lacks the equilibrium effect that arises

from representative sampling. Second, since
√
q(1− q) < 1

2
for any q ∈ (0, 1), rt assigns

higher probability to the favored alternative than any RSE value of qt, for any type t.

Of course, rt increases with n and converges to one as n → ∞. However, rt differs from

qt in the speed of convergence. Our next result demonstrates that qt(n) increases much more

slowly than rt(n). For convenience, we fix t = 1; this is without loss of generality.

Proposition 3 For every k > 0, there exists n(k) such that for every integer n ≥ n(k):

q1(n) ≤ Φ(1
2
nk)
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Figure 1(a) Figure 1(b)

In the uniform-sample case, rt(n) increases with n like Φ(
√
n). By comparison, in the

representative sample case, qt(n) increases with n more slowly than Φ(nk) for any k, how-

ever small (and in particular, smaller than 1
2
). Thus, the equilibrium forces introduced by

representative sampling have a qualitative effect on the DM’s choice behavior, even when n

is large.

Figure 1 illustrates this comparison for t = 1. Figure 1(a) focuses on the range n < 100,

while Figure 1(b) zooms out to n < 500 (and also describes Φ(1
2
n1/4)). As we can see, the

uniform-case specification exhibits fast convergence — e.g., r1(30) ≈ 0.997. In contrast, the

RSE prediction is q1(30) ≈ 0.925. Considering that t = 1 represents an objective payoff

difference of one standard deviation (recall that σ = 1), this is a significant choice error.

Moreover, convergence is very slow such that from around n = 400, q1(n) < Φ(1
2
n1/4).

3.2 Getting Data from “Similar” Types

In many of the real-life situations that motivate our physical sampling interpretation, people

do not get their data from a representative sample of the entire population, but rather from

a sub-population of “similar” agents. To capture this, we introduce a new primitive into our

model, in the spirit of Jehiel’s (2005) notion of analogy partitions. Let Π be a partition of T ,

where Π(t) denotes the partition cell that includes t. For some of our results, we will assume

that Π consists of “intervals” — i.e., if Π(t) = Π(t′) and t < t′′ < t′, then Π(t′′) = Π(t). In

this case, we refer to Π as an interval partition.

The average frequency of choosing z among types in Π(t) is

q̄Π(t)(z) =

∑
t∈Π(t) µtqt(z)∑

t∈Π(t) µt

(7)
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We will occasionally use the abbreviated notation q̄Π(t) = q̄Π(t)(B).

One interpretation of Π is that it captures coarse sample data. In the physical-sampling

take on our model, the DM tends to learn the outcome of choices by other agents who are

like her, in the sense that they share certain characteristics with her. In the introspective

take, the DM accesses similar situations she experienced in the past. For these examples, a

fine partition means the DM only considers situations who are very similar their own. An

alternative interpretation relevant for physical sampling is that Π represents a particular

word-of-mouth learning environment. The DM learns from the experiences of socially linked

agents. The partition corresponds to a particular social network that consists of isolated

cliques. When Π is an interval partition, a finer partition corresponds to a larger degree of

homophily.

The next result establishes monotonicity of q̄π when Π is an interval partition. Given

any two cells π, π′ ∈ Π, write π′ ≻ π if and only if t′ > t for every t ∈ π, t′ ∈ π′.

Proposition 4 Suppose Π is an interval partition. Then, in equilibrium, π ≻ π′ implies

q̄π > q̄π′.

Note that the monotonicity result applies to average choice probabilities in cells of the

interval partition Π, but not necessarily to choice probabilities of individual types. In par-

ticular, it is possible that t′ > t and yet qt′ < qt in the unique RSE. To see why, note that

in RSE, two opposing forces shape choice probabilities. On one hand, a higher type (which

represents a greater underlying taste for B) is a force that increases the probability of choos-

ing this alternative. On the other hand, suppose that Π(t′) ≻ Π(t) and t′ is at the lower end

of its cell while t is at the upper end of its cell. Then, t′ shares its cell with higher types

that imply a high q̄Π(t′), whereas t shares its cell with lower types that imply a low q̄Π(t). As

a result, the sample size for alternative A will be smaller for type t′, which implies a noisy

estimate of the payoff difference between the two alternatives. This force favors the inferior

alternative A, and therefore lowers the probability of choosing B for t′, relative to t. The

net effect of these two forces is ambiguous. Of course, within a given cell, qt increases with

t, as in Remark 2.

We now turn to the question of how the coarseness of the partition Π affects the DM’s

behavior. First, we analyze the effect of splitting a partition cell into multiple sub-cells on

the average behavior of types in the various sub-cells.
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Proposition 5 Consider two partitions Π and Π′, such that Π′ refines some cell T ∗ into a

collection of sub-cells {T 1, ..., Tm}. Let q and q′ be the RSE under Π and Π′. Then:

(i) If q̄Tk > q̄T ∗, then q̄′
Tk < q̄Tk .

(ii) If q̄Tk < q̄T ∗, then q̄′
Tk > q̄Tk .

To understand this result, suppose that the original partition is fully coarse, and its re-

finement divides it into two groups. Suppose further that under the original coarse partition,

the average propensity to consume the superior alternative in group 1 is above the overall

average (such that group 2 is below the average). The result says that after the refinement,

the average probability of consuming the superior alternative decreases in group 1 and in-

creases in group 2. If we think of each cell in the refined partition as a “peer group”, then the

message of the result is that increased homophily (i.e., greater tendency to learn from similar

types) brings the choice probabilities in extreme cells closer together. The intuition behind

this result is that when members of group 1 stop learning from the choices of members of

group 2, they have fewer sample points about the inferior product, which leads to a noisier

assessment and therefore a lower probability of choosing the superior product.

While Proposition 5 holds for any partitional structure, in the remainder of the sub-

section we restrict attention to interval partitions. Our next result will make use of the

following lemma. Define the function H(s, x) = Φ (sx) where s, x > 0.

Lemma 1 If s < 2 and x ∈ (0, 1
2
), then H is supermodular.

We now show that as long as the types in T are not too far away from zero, a finer

partition leads to a higher overall probability of taking the inferior action A.

Denote

q̄(Π) =
∑
t∈T

µtqt(Π)

where qt(Π) is the RSE probability that type t chooses B under the partition Π.

Proposition 6 Suppose t
√
n ∈ (0, 2) for every t ∈ T . Consider two interval partitions Π

and Π′, such that Π′ is a refinement of Π. Then, q̄(Π′) < q̄(Π).

This result establishes that when the underlying payoff advantage of alternative B is

sufficiently small, a finer partition leads to a higher probability of choice mistakes. Recall

our two alternative interpretations of Π. Under the “coarse data” interpretation, the result
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means that finer data has an adverse effect on average choice quality. Under the “homophily”

interpretation, the result means that increasing the homophily of the underlying social net-

work that agents rely on for learning leads to poorer choice on average. The question of how

the coarseness of Π affects average behavior for larger values of t remains open.

It can also be shown that under the same conditions, a finer partition has an adverse

effect on average welfare. Intuitively, this is because Proposition 5 implies that refining

the partition leads to a decrease (an increase) in the probability of choosing B among high

(low) types. Proposition 6 shows that the decrease among the high types is greater than the

increase among the low types. Since the welfare effects of a change in choice probability are

larger for high types (whose bias in favor of B is stronger), Proposition 6 also implies an

overall decrease in average welfare following the refinement.

4 Extension to Simultaneous-Move Games

Once we understand that representative-sampling-based choice requires an equilibrium mod-

eling approach even in single-agent decision problems, extending this idea to interactive

decision-making is rather straightforward. Indeed, as explained in the Introduction, this

paper is related to the game-theoretic literature that introduced sampling-based equilibrium

concepts (notably Osborne and Rubinstein (1998,2003) and Salant and Cherry (2020)). In

this section we substantiate this link and describe how to extend RSE to strategic-form

games. We use the Prisoner’s Dilemma to illustrate how the basic force captured by RSE

can have significant implications for games.

For expositional simplicity, restrict attention to symmetric, finite two-person games.

Players’ action set is A and their vNM utility function is u : A× A → R. Suppose player j

follows a mixed strategy q ∈ ∆(A), where q(a) denotes the probability of playing a. Then,

each action ai ∈ A for player i induces a lottery over her payoff v, where

Pr(v | ai) =
∑

aj∈A|u(ai,aj)=v

q(aj)

This lottery has well-defined mean and variance, denoted mq(ai) and σ2
q (ai). Based on this

pair, we can construct a well-defined normal variable N(mq(ai), σ
2
q (ai)). As before, let n

denote a player’s total sample size.

A player’s estimated payoff from playing a when her opponent is playing q is defined to

be

ûq(a) ∼ N

(
mq(a),

σ2
q (a)

nq(a)

)
(8)
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Definition 2 A mixed strategy q ∈ ∆(A) is an RSE if for every a ∈ A,

q(a) = Pr [ûq(a) > ûq(a
′) for every other a′ ∈ A]

The equilibrium definition itself is a straightforward extension of RSE to symmetric

two-player games. In the spirit of the sampling-based game-theoretic solution concepts

described above, it captures the idea that players base their choices on samples from the

equilibrium distribution. RSE introduces an additional layer of endogeneity, in that a player’s

sample composition also depends on her own strategy. The extension of RSE to games

involves another modeling innovation, which is the Gaussian approximation of the payoff

distribution induced by each action given the opponent’s mixed strategy, as given by (8). In

the basic model of Section 2, we took the Gaussian noise as given without probing its origin,

as is common in the stochastic choice literature. However, when we turn to games, the

payoff distribution is determined by the structure of the game, and therefore the Gaussian

approximation needs to be constructed more explicitly. The Central Limit Theorem means

that when nq(a) is moderately large, the approximation is precise.

An Example: The Prisoner’s Dilemma

To illustrate the extended definition of RSE, consider the following symmetric 2 × 2 game.

The action set for each player is {0, 1}. Player i’s payoff is ui(ai, aj) = aj − cai, where c < 1.

This is a standard specification of the Prisoner’s Dilemma, where the strictly dominant action

a = 0 corresponds to defection.

As in Section 3, our main interest here is in the contrast between the predictions of RSE

and the uniform-sample case.

Proposition 7 The Prisoner’s Dilemma has a unique symmetric RSE, where the probability

of playing a = 0 is Φ(c
√
n).

Thus, RSE uniquely predicts a positive probability of cooperation, which is below 1
2

and decreases with c and n. One might think that playing a strictly dominated action with

positive probability is merely a consequence of sampling error. However, we now demonstrate

the crucial role that representative sampling plays in this result. Specifically, compare our

analysis with the uniform-sample case: a player’s estimated gain from playing a = 0 is

û(0)− û(1) ∼ N

(
c,
2r(1− r)

n
+

2r(1− r)

n

)
= N

(
c,
4r(1− r)

n

)
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where r is the probability that the player’s opponent plays a = 0. The equilibrium condition

for this uniform-sample variant is

r = Pr

{
N

(
0,

4r(1− r)

n

)
> −c

}
(9)

Remark 3 When nc2 > 8, the unique solution of (9) is r = 1.

This example demonstrates once again the key role of representative sampling in two-

action decision problems — specifically, its enhancement of the perceived value of objectively

inferior actions. In the Prisoner’s Dilemma (as in any simultaneous-move game), the dis-

tribution of a single sample point for a player’s action is given by the opponent’s mixed

strategy. As this strategy becomes more skewed in favor of the objectively superior action

(defection), its variance vanishes and makes the player’s assessment of the two actions more

accurate. Under a uniform sample, this force eliminates the possibility of cooperative play

when n is not too small. The representative-sample assumption introduces a counter-force

that favors the objectively inferior action (cooperation) and therefore manages to sustain it

with positive equilibrium probability for any value of n.

Comment. Arigapudi et al. (2021) study S(K) equilibria in the Prisoner’s Dilemma and

their dynamic convergence properties. They show that for some range of values of K and

the payoff parameters, cooperation can be part of a stable S(K) equilibrium. However, if K

is not small enough relative to the parameters that correspond to c in the present example,

cooperation cannot be sustained in equilibrium. The uniform-sample version of the present

model serves as a normal approximation of the analysis in Arigapudi et al. (2021), where

K = n/2.

5 Conclusion

This paper introduced a modeling innovation to the literature on stochastic choice and

explored its implications in binary-choice environments. We adopted a naive-sampling inter-

pretation of the ARU model with Gaussian noise, and introduced representative sampling

to capture the idea that the precision of a DM’s signal about the value of an alternative

increases with its choice frequency. This, in turn, required an equilibrium approach to mod-

eling single-agent stochastic choice. To facilitate an extension of these ideas to more complex

environments such as strategic games, we introduced Gaussian signals as a modeling approx-

imation, such that the mean and variance of the Gaussian signal are given by the objective

payoff distribution induced by players’ equilibrium mixed strategies.
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The main economic insight that emerged was the equilibrium force that favors inferior

alternatives — leading to very slow convergence to rational choice as sample size increases,

and to positive cooperation rates in the Prisoner’s Dilemma for any sample size. This force

can have nuanced implications when coupled with varying information structures, as demon-

strated by the comparative statics with respect to the coarseness of the DM’s information.
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Appendix: Proofs

Proposition 1

Assume towards contradiction that q = (qt)t∈T and q′ = (q′t)t∈T are both RSE solutions and

q ̸= q′. Let t satisfy qt ̸= q′t for some t ∈ T . Then, by (4), q̄′ ̸= q̄. Assume without loss of

generality that q̄ > q̄′. Since t > 0 for every t ∈ T , we have qt, q
′
t >

1
2
for every t ∈ T and

hence q̄ > q̄′ > 1
2
. This implies q̄(1− q̄) < q̄′(1− q̄′). Thus, for all t ∈ T ,

qt = Φ
(
t
√

nq̄(1− q̄)
)
< Φ

(
t
√

nq̄′(1− q̄′)
)
= q′t

Hence,

q̄ =
∑
t∈T

µtqt(z) <
∑
t∈T

µtq
′
t(z) = q̄′

a contradiction.

Proposition 2

Assume the contrary — i.e., there exists q∗ < 1 such that for every n > 0, there exists n′ > n

such that qt(n
′) < q∗. Recall that qt(n

′) > 1
2
. Therefore, for all such n′,

qt(n
′)(1− qt(n

′)) > q∗(1− q∗)

Consequently,
√

n′qt(n′)(1− qt(n′)) diverges with n′, which implies that, from some point

onward,

Φ
(
t
√
n′qt(n′)(1− qt(n′))

)
> q∗

a contradiction.

Proposition 3

We will prove that for all k > 0,

q1(n) ≤ Φ(nk)

from some n(k) onward. The general claim follows immediately with a suitable change of

n(k). Let n, k > 0 and denote x = q1(n). That is, x is the unique solution to

x = Φ
(√

nx(1− x)
)

Assume towards contradiction that x > Φ(nk). Since Φ is monotonically increasing,
√
nx(1− x) >

nk or, equivalently,

x(1− x) > n2k−1 (10)
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The contradiction is immediate for k ≥ 1
2
. Henceforth, we assume k < 1

2
.

Let f(x) = x(1 − x). The function f is invertible for x ∈ [1
2
, 1] with f−1 : [0, 1

4
] → [1

2
, 1]

given by f−1(x) = 1+
√
1−4x
2

. The inequality (10) implies 0 < n2k−1 < 1
4
and, since f is strictly

decreasing, also implies,

x < f−1(n2k−1) =
1 +

√
1− 4n2k−1

2

Thus,

Φ(nk) < x <
1 +

√
1− 4n2k−1

2

Hence, it suffices to show that from some n onward,

Φ(nk) ≥ 1 +
√
1− 4n2k−1

2

By the Chernoff bound for the normal distribution (e.g., see Boucheron et al. (2013)),

1− Φ(x) ≤ e−
x2

2 (11)

for all x > 0. Thus, Φ(nk) ≥ 1− e−
n2k

2 and it suffices to prove

e−
n2k

2 ≤ 1−
√
1− 4n2k−1

2
(12)

for sufficiently large n. To see this, define

h(n) =
1−

√
1− 4n2k−1

2
− e−

n2k

2

Note that (since k < 1
2
) limn→∞h(n) = 0. We now show that there exists n(k) such that for

all n ≥ n(k), h′(n) < 0. This will imply h(n) ≥ 0 for all n ≥ n(k) and thus that (12) holds

for all such n. We have

h′(n) =
(2k − 1)n2k−2

√
1− 4n2k−1

+ kn2k−1e−
n2k

2

Therefore, h′(n) < 0 if and only if

e
n2k

2

n
√
1− 4n2k−1

>
k

1− 2k
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Successive applications of L’Hôpital’s rule imply

limn→∞
e

n2k

2

n
√
1− 4n2k−1

= ∞

which completes the proof.

Proposition 4

Suppose that π ≻ π′, and assume that q̄π′ ≥ q̄π. As we already saw, since t > 0 for every

t ∈ T , qt >
1
2
for every t in RSE, and therefore q̄π > 1

2
. It follows that q̄π(1−q̄π) ≥ q̄π′(1−q̄π′).

Since t > t′ for every t ∈ π, t′ ∈ π′, it follows from (4) that qt > qt′ in RSE for every t ∈ π,

t′ ∈ π′, hence q̄π > q̄π′ , a contradiction.

Proposition 5

We prove part (i); the proof of part (ii) follows the same logic. Suppose q̄Tk > q̄T ∗ for some

k = 1, ...,m. Then, since both quantities are above 1
2
,

q̄Tk(1− q̄Tk) < q̄T ∗(1− q̄T ∗)

By (4),

qt = Φ
(
t
√

nq̄T ∗(1− q̄T ∗)
)

for every t ∈ T ∗. Therefore, since Φ is an increasing function,

qt > Φ
(
t
√

nq̄Tk(1− q̄Tk)
)

for every t ∈ T ∗. Taking an average over t ∈ T k with respect to the conditional type

distribution given T k, we obtain

q̄Tk −
∑
t∈Tk

µt∑
t∈Tk µt

Φ
(
t
√
nq̄Tk(1− q̄Tk)

)
> 0 (13)

By comparison, the definition of q′ requires

q̄′Tk −
∑
t∈Tk

µt∑
t∈Tk µt

Φ
(
t
√
nq̄′

Tk(1− q̄′
Tk)
)
= 0 (14)

Since the L.H.S of (13)-(14) is an increasing function of a scalar variable (q̄Tk in the inequality,

q̄′
Tk in the equation), it follows that q̄′

Tk < q̄Tk .
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Lemma 1

Recall that

H(s, x) =
1√
2π

∫ sx

−∞
e−

a2

2 da

The cross derivative of H is

∂H(s, x)

∂x∂s
=

e−
(xs)2

2

√
2π

[
1− (xs)2

]
When x < 1

2
, this expression is strictly positive whenever s < 2.

Proposition 6

For notational simplicity only, we set n = 1 in what follows. Take two interval partitions Πc

and Πf , such that Πf is a refinement of Πc. For notational simplicity, let qft = qt(Π
f ) and

qct = qt(Π
c).

Consider some cell T ∗ ∈ Πc. Denote

αt =
µt∑

s∈T ∗ µs

Define

Qc =
∑
t∈T ∗

αtq
c
t =

∑
t∈T ∗

αtΦ
(
t
√
Qc (1−Qc)

)
This is the average equilibrium probability of choosing B among types in T ∗ under the

partition Πc.

Obviously, if T ∗ is also a cell in Πf , then qct = qft for every t ∈ T ∗, hence QC = Qf . We

now turn to the non-degenerate case, in which Πf strictly refines the cell T ∗. Let βπ be the

probability of π ∈ Πf conditional on π ⊂ T ∗. Denote

q̄π =
∑
s∈π

αs

βπ

qfs

Define

Qf =
∑
t∈T ∗

αtq
f
t =

∑
t∈T ∗

αtΦ
(
t
√
q̄Πf (t)(1− q̄Πf (t))

)
This is the equilibrium probability of choosing B conditional on t ∈ T ∗ under Πf . Suppose

that Qc ≤ Qf . Then, since
√

q(1− q) is strictly decreasing in q > 1
2
,√

Qc(1−Qc) ≥
√

Qf (1−Qf )
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Since Φ is strictly increasing,

Qc =
∑
t∈T ∗

αtΦ
(
t
√

Qc (1−Qc)
)
≥
∑
t∈T ∗

αtΦ
(
t
√
Qf (1−Qf )

)
Denote

xπ =
√

q̄π(1− q̄π)

The expression
√

q(1− q) is strictly concave in q. Therefore,

√
Qf (1−Qf ) =

√√√√(∑
π⊂T ∗

βπ q̄π

)(
1−

∑
π⊂T ∗

βπ q̄π

)
>
∑
π⊂T ∗

βπ

√
q̄π(1− q̄π) =

∑
π⊂T ∗

βπxπ

Since Φ is strictly increasing,

∑
t∈T ∗

αtΦ(t
√
Qf (1−Qf )) >

∑
t∈T ∗

αtΦ

(
t
∑
π⊂T ∗

βπxπ

)
=
∑
t∈T ∗

αtH

(
t,
∑
π⊂T ∗

βπxπ

)

By concavity of H with respect to its second argument,

H

(
t,
∑
π⊂T ∗

βπxπ

)
>
∑
π⊂T ∗

βπH(t, xπ)

for every t. Therefore,

∑
t∈T ∗

αtH

(
t,
∑
π⊂T ∗

βπxπ

)
>
∑
t∈T ∗

∑
π⊂T ∗

αtβπH(t, xπ)

Note that xπ ∈ (0, 1
2
) for every π, by the definition of xπ. Furthermore, by the mono-

tonicity result, the cells in Πf are ordered such that q̄Πf (t) is increasing in t, and hence xΠf (t)

is decreasing in t. By Lemma 1, H is supermodular when t < 2. Therefore,∑
t∈T ∗

∑
π⊂T ∗

αtβπH(t, xπ) >
∑
t∈T ∗

αtH(t, xΠf (t))

=
∑
t∈T ∗

αtΦ
(
t
√

q̄Πf (t)(1− q̄Πf (t))
)
= Qf

This inequality is a special case of a standard inequality from the literature on stochastic
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orderings — e.g., see Tchen (1980).3 We have thus obtained Qc > Qf , a contradiction. It

follows that for every cell T ∗ ∈ Πc, Qc ≤ Qf , with a strict inequality for at least one cell.

Therefore, q̄(Πc) < q̄(Πf ).

Proposition 7

Let q denote the RSE probability of a = 0. When a player draws a single sample point from

an action a, she obtains the payoff 1 − ca with probability 1 − q and the payoff −ca with

probability q. The normal distribution that shares the mean and variance with this random

variable is

N (1− q − ca, q(1− q))

In RSE, the player samples a = 0 nq times and a = 1 n(1− q) times. Therefore, the player’s

estimated gain from playing a = 0 is

û(0)− û(1) ∼ N

(
c,
q(1− q)

nq
+

q(1− q)

n(1− q)

)
= N

(
c,

1

n

)
In RSE,

q = Pr

{
N

(
0,

1

n

)
> −c

}
= Φ(c

√
n)

This completes the proof.

Remark 3

The condition (9) can be rewritten as

r = Φ

(
c

√
n

4r(1− r)

)
Applying the Chernoff bound (11), we obtain

r = Φ

(
c

√
n

4r(1− r)

)
≥ 1− e−

c2n
8r(1−r)

This inequality is equivalent to

x ≤ e−
c2n

8x(1−x)

where x = 1− r. We now show that when nc2 > 8, this inequality fails for all x ∈ (0, 1]. To

see this, denote t = c2n and define

f(x, t) = x− e−
t

8x(1−x)

3We thank Meg Meyer for the reference.
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Note that for all x > 0, f(x, t) is increasing in t for t > 0. Thus, it suffices to prove that

f(x, 8) > 0 for all x ∈ (0, 1]. For all such x we have x > x(1− x) > 0 and hence,

f(x, 8) = x− e−
1

x(1−x) > x− e−
1
x

The R.H.S can easily be shown to be strictly positive for all x > 0.
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