
False Narratives and Political Mobilization:

A Dynamic Convergence Result∗

Kfir Eliaz, Simone Galperti, and Ran Spiegler†

November 6, 2022

In this supplementary document, we consider a simple and natural dy-

namic process that determines which platforms garner maximal support over

time. We show that the process converges to the unique equilibrium distrib-

ution over policies and coalitions in our main result. This global convergence

result provides a dynamic foundation for our equilibrium concept.

Time is discrete and denoted by t = 1, 2, . . .. In each period t, there is

a distribution σt over platforms (a, C, S), where a ∈ {`, h}, C ⊆ N , and

S ∈ S. Let the initial σ1 be any distribution with full support over the set

of platforms using admissible coalitions. Since the set of platforms is finite,

this distribution is well-defined. The distribution σt evolves according to the

following adjustment. For every t ≥ 2, let

(a, C, S)t ∈ arg max
(a′,C′,S′)

Uσt(a
′, C ′, S ′),
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where ties can be broken arbitrarily. Then, let

σt+1(a, C, S) =


1
t+1

+ t
t+1
σt(a, C, S) if (a, C, S) = (a, C, S)t

t
t+1
σt(a, C, S) otherwise.

Thus, for t large enough, we can essentially view σt(a, S, C) as the empirical

frequency with which platform (a, C, S) has been dominant in the available

history of data.

Proposition 1. Every limit point σ of the process σt induces the same distri-
bution over policy-coalition pairs (a, C) as that induced by the unique essential

equilibrium σ∗.

This result formalizes and generalizes the dynamic convergence process

we discussed in the context of the two-group specification in Section 3.

Proof of Proposition 1

In this proof, we denote platforms by z whenever convenient to simplify

notation. For every t, let z̄t = (āt, C̄t, S̄t) ∈ arg maxz Uσt(z) be the dominant

platform at period t and let Uσt = Uσt(z̄t) be the payoff it generates. Note

that if there exists T such that z̄t 6= (a, C, S) for all t ≥ T , then σt(a, C, S)→
0 as t→∞. Recall that U∗ = q ·F (N g, g) > 0. The proof proceeds stepwise.

Step 1. Uσt ≥ U∗ for every t.

Proof. Since σ1 has full support, σt(N g, g, {0}) > 0 for every finite t; there-

fore, Uσt ≥ Uσt(N
g, g, {0}) = U∗ for every t.

Step 2. If z̄t = (h,C, S), then C = Nh and Uσt(h,C, S) = U∗.

Proof. For every platform (h,C, S) such thatC ⊂ Nh, Uσt(h,C, S) < Uσt(N
g, g, {0})

because Prσt(y = 1 | xS(h,C)) ≤ q and F (h,C) < F (N g, g). This also im-

plies that Uσt(N
g, g, S) ≤ U∗ for all S and hence the last equality.
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Step 3. For all t, there exists t′ > t such that z̄t′ = (N g, g, S) for some S.

Proof. Step 1 implies that

lim inf
t→∞

Uσt ≥ U∗.

Suppose there exists t such that z̄t′ = (`, C̄t′ , S̄t′) for all t′ ≥ t. This

implies that Prσt(y = 1 | xS̄t(āt, C̄t)) → 0, which is inconsistent with

lim inft→∞ Uσt > 0.

Step 4. lim inf Uσt = U∗.

Proof. We have already established that lim inft→∞ Uσt ≥ U∗. Note that, if

Uσt > U∗, then z̄t = (`, C, S) for some C and S, because Uσt(h,C
′, S ′) ≤ U∗

for all C ′ and S ′. Now suppose lim inft→∞ Uσt > U∗. Then, there exists T

such that for all t ≥ T , z̄t involves policy a = `. This contradicts Step 3.

Recall that

Prσt(y = 1 | xS(a, C)) = q ·
∑

C′,S′|xS(h,C′)=xS(a,C) σt(h,C
′, S ′)∑

a′,C′,S′|xS(a′,C′)=xS(a,C) σt(a
′, C ′, S ′)

Step 5. If z̄t = (N g, g, Ŝ) and xS(N g, g) = xS(`, C), then

Prσt+1(y = 1 | xS(`, C)) > Prσt(y = 1 | xS(`, C))
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Proof. Given z̄t = (N g, g, Ŝ), for every (`, C, S) such that xS(N g, g) = xS(`, C),

Prσt+1(y = 1 | xS(`, C)) = q
1
t+1

+ t
t+1

∑
C′,S′|xS(h,C′)=xS(`,C) σt(h,C

′, S ′)
1
t+1

+ t
t+1

∑
a′,C′,S′|xS(a′,C′)=xS(`,C) σt(a

′, C ′, S ′)

= q
1
t

+
∑

C′,S′|xS(h,C′)=xS(`,C) σt(h,C
′, S ′)

1
t

+
∑

a′,C′,S′|xS(a′,C′)=xS(`,C) σt(a
′, C ′, S ′)

> q

∑
C′,S′|xS(h,C′)=xS(`,C) σt(h,C

′, S ′)∑
a′,C′,S′|xS(a′,C′)=xS(`,C) σt(a

′, C ′, S ′)

= Prσt(y = 1 | xS(`, C))

Step 6. If z̄t = (`, Ĉ, Ŝ), then for every (`, C, S),

Prσt+1(y = 1 | xS(`, C)) ≤ Prσt(y = 1 | xS(`, C))

with strict inequality if and only if xS(`, Ĉ) = xS(`, C).

Proof. If z̄t = (`, Ĉ, Ŝ) and xS(`, Ĉ) 6= xS(`, C), then by definition, Prσt+1(y =

1 | xS(`, C)) = Prσt(y = 1 | xS(`, C)). Now suppose that z̄t = (`, Ĉ, Ŝ) and

xS(`, Ĉ) = xS(`, C). Then,

Prσt+1(y = 1 | xS(`, C)) = q
t
t+1

∑
C′,S′|xS(h,C′)=xS(`,C) σt(h,C

′, S ′)
1
t+1

+ t
t+1

∑
a′,C′,S′|xS(a′,C′)=xS(`,C) σt(a

′, C ′, S ′)

= q

∑
C′,S′|xS(h,C′)=xS(`,C) σt(h,C

′, S ′)
1
t

+
∑

a′,C′,S′|xS(a′,C′)=xS(`,C) σt(a
′, C ′, S ′)

< q

∑
C′,S′|xS(h,C′)=xS(`,C) σt(h,C

′, S ′)∑
a′,C′,S′|xS(a′,C′)=xS(`,C) σt(a

′, C ′, S ′)

= Prσt(y = 1 | xS(`, C))

Step 7. If (`, C, S) is such that xS(`, C) 6= xS(N g, g), then σt(`, C, S) → 0
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as t→∞.

Proof. Suppose σt(`, C, S) 6→ 0. Then, there exists a subsequence such that

σt(`, C, S) → σ̂ > 0, which implies that the denominator of Prσt(y =

1|xS(`, C)) converges to a strictly positive number along the subsequence.

However, the numerator of Prσt(y = 1|xS(`, C)) converges to zero by Step 2,

because σt(h,C ′, S ′) → 0 if xS(h,C ′) = xS(`, C) and hence C ′h. Therefore,

Uσt(`, C, S)→ 0 along the subsequence, which contradicts σt(`, C, S)→ σ̂ >

0.

Step 8. If (`, C, S) is such that xS(`, C) = xS(N g, g), then

lim inf
t→∞

∑
C′,S′|xS(h,C′)=xS(`,C)

σt(h,C
′, S ′) = lim inf

t→∞

∑
S′

σt(N
g, g, S ′) ≡ σ > 0

Proof. The first equality follows because σt(h,C ′, S ′) → 0 if C ′h by Step 2

and because xS(`, C) = xS(N g, g). The last inequality is strict because, if

σ = 0, there exists a subsequence such that
∑

C′,S′ σt(h,C
′, S ′) → 0 and

hence σt(`, C, S)→ σ̂ > 0 for some (`, C, S) such that xS(`, C) = xS(N g, g).

However, in this case there exists T such that for all t ≥ T in this subsequence

the numerator of Prσt(y = 1 | xS(`, C)) becomes arbitrarily small and hence

Uσt(`, C, S) < U∗, which is inconsistent with σ̂ > 0.

Step 9. lim supt→∞ Uσt ≤ U∗.

Proof. Suppose lim supt→∞ Uσt = Ū > U∗. Let

P̄ =

{
(`, C, S) | lim sup

t→∞
Uσt(`, C, S) = Ū

}
,

which must be non-empty because the set of platforms is finite. Note that

(`, C, S) ∈ P̄ only if xS(`, C) = xS(N g, g). By finiteness of P̄ , there exists

a common subsequence, T , and ε > 0 such that for all t′ ≥ T in this sub-

sequence Uσt′ (`, C, S) ≥ U∗ + ε for all (`, C, S) ∈ P̄ . By Step 3, there must
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exist a t > T (not necessarily in the subsequence) such that z̄t = (N g, g, S)

and hence Uσt = U∗. Therefore, Uσt(`, C, S) ≤ U∗ for all (`, C, S) ∈ P̄ . By
Step 5, for all (`, C, S) ∈ P̄ ,

Uσt+1(`, C, S)

Uσt(`, C, S)
=

(
1
t
+
∑
C′,S′|xS(h,C′)=xS(`,C)

σt(h,C′,S′)
1
t
+
∑
a′,C′,S′|xS(a′,C′)=xS(`,C)

σt(a′,C′,S′)

)
( ∑

C′,S′|xS(h,C′)=xS(`,C)
σt(h,C′,S′)∑

a′,C′,S′|xS(a′,C′)=xS(`,C)
σt(a′,C′,S′)

)

<

(
1
t
+
∑
C′,S′|xS(h,C′)=xS(`,C)

σt(h,C′,S′)∑
a′,C′,S′|xS(a′,C′)=xS(`,C)

σt(a′,C′,S′)

)
( ∑

C′,S′|xS(h,C′)=xS(`,C)
σt(h,C′,S′)∑

a′,C′,S′|xS(a′,C′)=xS(`,C)
σt(a′,C′,S′)

)
=

1
t∑

C′,S′|xS(h,C′)=xS(`,C) σt(h,C
′, S ′)

+ 1

which converges to 1 as t→∞ by Step 8. Therefore, for every δ > 0, we can

pick T large enough such that, for all t ≥ T such that z̄t = (h,C, S),

Uσt+1(`, C, S)

Uσt(`, C, S)
≤ 1 + δ

for all (`, C, S) ∈ P̄ . Finally, this means that we can also pick T and t ≥ T so

that z̄t = (h,C, S) and Uσt+1(`, C, S) < U∗+ε for all (`, C, S) ∈ P̄ . Therefore,
Uσt+k(`, C, S) < U∗ + ε for all (`, C, S) ∈ P̄ and all k ≥ 1, because by Step

6 the payoff of (`, C, S) is weakly decreasing when Uσt(`, C, S) > U∗. We,

thus, reach a contradiction.

Steps 4 and 9 imply that limt→∞ Uσt = U∗. Now, denote by Σ the set of

limit points of σt.

Step 10. All σ ∈ Σ must induce the same joint distribution over (a, C), and

this distribution must coincide with the unique equilibrium distribution.

Proof. Note that Uσ(z) is continuous in σ for all z. The previous conclusion

implies that, for every σ ∈ Σ and every z, Uσ(z) ≤ U∗, with equality for
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z ∈ Supp(σ). The equilibrium characterization results in Sections 3 and 4

established that every σ that satisfies this property induces the same distri-

bution over (a, C). This completes the proof.
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