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Abstract

When inferring causal effects from correlational data, a common

practice – by professional researchers but also lay people – is to

control for potential confounders. Inappropriate controls produce er-

roneous causal inferences. I model decision-makers who use observa-

tional data to learn actions’causal effect on payoff-relevant outcomes.

Different decision-maker types use different controls. Their resulting

choices affect the very correlations they learn from, thus calling for

equilibrium analysis of the steady-state welfare cost of using bad con-

trols. I obtain tight upper bounds on this cost. Equilibrium forces

drastically reduce it when types’sets of controls contain one another.
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1 Introduction

Learning causal effects from observational data is an important economic

activity. Indeed, applied economists do it for a living. However, even lay

decision makers regularly perform this activity to evaluate the consequences

of their actions. They obtain data about observed correlations among vari-

ables (via first- or second-hand experience, or from the media) and try to

extract causal lessons from the data. Which college degree will improve their

long-run economic prospects? Will wearing surgical masks on airplanes lower

their chances of catching a virus? Is coffee drinking good for one’s health?

There are two main differences between causal inference from observa-

tional data as practiced by professional researchers and lay decision makers.

First, the researcher employs sophisticated inference methods that are sub-

jected to stringent scrutiny by other professionals. In contrast, lay decision

makers use intuitive, elementary methods, and they do not face pushback

when they employ these methods inappropriately. Sometimes they simply

follow the advice of methodologically flawed research (or the media’s misrep-

resentation of sound research). Second, while the professional researcher is

an outside observer, lay decision makers interact with the economic system

in question; the aggregate behavior that results from their causal inferences

can affect the very correlations from which they draw these inferences. It is

therefore apt to refer to the kind of causal inference that lay decision makers

engage in as “behavioral”, in both senses of the word.

This paper is an attempt to model “behavioral causal inference”. I study

a decision maker (DM) who faces a choice between two actions (0 and 1).

The DM’s choice is based on his belief regarding the action’s causal effect on

a payoff-relevant outcome. Using an intuitive causal-inference method, the

DM extracts this causal belief from long-run correlational data about actions,

outcomes and a collection of exogenous variables. The data is generated by

the behavior of other DMs in similar situations. In equilibrium, the DMs’

behavior is consistent with best-replying to their causal belief.

The intuitive method of causal inference that the DM in my model em-

ploys is very simple: Measuring the observed correlation between actions

and outcomes, while controlling for some set of exogenous variables. This is

a basic and widespread procedure in scientific data analysis, but it is based
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on a simple idea that lay people practice to some extent. For example, when

an agent decides whether to wear a surgical mask for protection against viral

infection, it is natural for him to look for infection statistics about people in

his own age group. Likewise, when a student choosing a college major tries

to evaluate future earnings by STEM and non-STEM graduates, it is natural

for him to focus on people who share his high school math background. In

both cases, when the agent consults data to estimate the consequences of

various actions, he may try to focus on data points that share his own char-

acteristics – if he has access to such fine-grained data. Indeed, we should

expect heterogeneity in this regard: Agents may differ in what they feel a

need to control for, as well as in their access to data that enable controlling.

In general, suppose that long-run observational data is given by some

joint probability distribution p over actions a, outcomes y, and a collection

of exogenous variables x = (x1, ...., xK). The DM is able to control for the

variables indexed by C ⊆ {1, ..., K}. His estimated causal effect of a on y is

Ep(y | a = 1, xC)− Ep(y | a = 0, xC) (1)

When the set C of control variables differs from what an outside researcher

would deem appropriate, the DM’s causal inference can be wrong: he may

misread the causal meaning of observed correlations, and consequently ob-

tain a biased estimate of the causal effect of a on y (Angrist and Pischke

(2009), Cinelli et al. (2022)). The bias can be large, if x is strongly correlated

with both a and y.

However, when the correlation between a and x (as given by the condi-

tional distribution p(a | x)) reflects the aggregate behavior of DMs facing the

same situation, it also reflects their subjective optimization, induced by the

causal inferences they draw from p. This raises the following question: What

are the limits to the DM’s errors of causal inference due to bad controls, when

the data-generating process p has to be consistent with equilibrium behavior

– i.e., when the DM’s choice is optimal with respect to the subjective belief

he extracts from p using his causal-inference procedure? Could this equilib-

rium condition change our conclusions regarding the maximal welfare cost

of using bad controls?

I approach this question with a simple model, in which a DM chooses a
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after the exogenous variables t, x1, ..., xK are realized, where t ∈ {0, 1} is the
DM’s preference type. The payoff-relevant outcome y lies in [0, 1]. The DM’s

vNM utility function is u(a, t, y) = y − θ · 1[a 6= t]. Thus, t indicates the

DM’s favorite action, and θ is the cost he incurs when he does not take it.

The DM will only do so if he thinks that a has a beneficial causal effect on y.

In the baseline model, I assume that the actual effect is null: y is determined

only by the exogenous variables. This restriction is made for expositional

convenience (Appendix II extends the analysis straightforwardly whenever

a has an additively separable causal effect on y).

In addition to the variation in preference types, there is heterogeneity

among DMs in terms of how they perform causal inference. The DM’s “data

type”is defined by his set of control variables C, which is drawn indepen-

dently from some given set N . A DM of type C forms an estimated causal

effect of a on y (given x) according to (1). The formula is evaluated according

to an objective joint distribution p over all variables. The DM observes the

realization of t prior to his decision. However, since t is a private preference

type, I assume there is no statistical data about t, and therefore the DM

never uses it for his causal estimates (this entails no loss of generality for my

worst-case analysis, because one of the x variables can be a perfect proxy

for t). The objective distribution of a conditional on (t, x) describes the

aggregate behavior of the DM population, which arises from the strategies

of all DM types. In equilibrium, each type’s strategy prescribes best-replies

to his causal belief.

The basic insight of this paper is that this equilibrium condition can

drastically lower (and sometimes eliminate altogether) the welfare loss due

to errors of causal inference. These errors consist of misreading the causal

component of observed correlational patterns. Agents’ response to their

beliefs change these very patterns, and hence the causal lessons they draw

from them. As a result, unlike academic researchers, DMs who perform

faulty causal inference “in the field”need not suffer dire consequences.

Example 1.1: Investing in one’s education

Suppose that t = 0 with certainty – i.e., preferences are homogeneous.

There is a single x variable. There are two possible data types in this envi-

ronment: type 1 controls for x (hence, he conditions his action on x); whereas

type 2 does not (hence, he does not condition his action on x). Both types
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rely on the same aggregate “database”given by the joint distribution p over

x, a, y to form causal beliefs. An economic story behind this scenario is that

a, y and x represent personal educational investment, future earnings, and

a demographic characteristic. All agents in the population have an intrinsic

disutility from education, and will only make the investment if they think it

improves future earnings. Agents of type 1 are “sophisticated”in the sense

that they control for demographic characteristics when trying to infer the

causal effect of education on earnings, whereas agents of type 2 are “naive”

in the sense that they do not control for any exogenous variable.

Since type 1 controls for x, he correctly estimates a null causal effect

of a on y. This type plays a = t = 0 regardless of x – i.e., he ends

up not varying his action with x. Type 2 potentially commits an error of

causal inference because he fails to control for x, and therefore interprets any

empirical correlation between a and y as a causal effect. However, this type,

too, does not vary his action with x by definition. It follows that none of the

two types vary their actions with x. Thus, if p is consistent with equilibrium,

a and x are independent, thus destroying any possibility of x acting as a

confounder of the relation between a and y. In the absence of confounding,

failure to control for x does not result in an error of causal inference, as a

and y are statistically independent. It follows that under the equilibrium

restriction that p(a | x) reflects data types’ subjective optimization with

respect to their causal beliefs, the DM incurs no welfare loss due to bad

controls. By comparison, the maximal loss without the equilibrium condition

is 1 (since the values that a and y take are bounded between 0 and 1). �

The main results in this paper explore the generality of this observation.

I examine various families of joint distributions over t, x1, ..., xK , y, and char-

acterize the upper bound on the DM’s equilibrium welfare loss relative to

the expected payoff from the rational-expectations strategy a ≡ t. When the

objective causal effect of a on y is null, the welfare loss is simply θ ·Pr(a 6= t).

The analysis involves some structure on the set of data types. In many

areas of economic theory, we use typologies of economic agents that impose

some “vertical”order on types. In mechanism design, we often order prefer-

ence types according to the single-crossing property. Likewise, information

types in economic models are often ordered by the monotone-likelihood-ratio

property. In the present context, a natural vertical ordering of data types

5



is via set inclusion: C1 ⊃ C2 ⊃ · · · ⊃ Cn. In this case, lower-indexed types

control for larger sets of variables; they are closer to the ideal of controlling

for all potential confounders. In a naive sense, they are more “sophisti-

cated”(we will have opportunities to be reminded that controlling for more

variables is not necessarily a good thing).

The distinction between vertically ordered and unordered data-type spaces

turns out to be crucial for the upper bounds on the welfare loss due to bad

controls. In Section 3, I consider the case of homogenous preferences (i.e.,

there is no variation in t). When data types are vertically ordered, the

equilibrium welfare loss is zero – that is, the equilibrium condition fully

protects the DM from choice errors arising from the use of bad controls. It

does so by shutting down the channels through which the choice behavior of

some types confound the relation between other types’actions and y. Con-

versely, when data types are not vertically ordered, the tight upper bound

on the DM’s welfare loss (when we are free to set the value of θ and the

data-type distribution) is 1 – the same as when no equilibrium requirement

is imposed.

In Section 4, I obtain a softer version of this “bang-bang” result when

there is variation in t. Here I restrict attention to distributions in which t is

the sole true cause of y (and x variables are thus observable proxies for t).

For a vertically ordered data-type space, the tight upper bound on the DM’s

equilibrium welfare loss is Pr(t = 1) ·Pr(t = 0). When types are not ordered,

the tight upper bound is max{Pr(t = 1),Pr(t = 0)}. When in addition we
relax the assumption that y is independent of x conditional on t, the tight

upper bound is 1.

The raw intuition behind these results is that when DMs systematically

best-reply to their causal belief, they attenuate the correlational patterns

that lend themselves to causal misinterpretation. In Example 1.1, this effect

took a very simple form: The type that conditions on x can in principle

correlate his actions with x, thus creating a confounding pattern that leads

the other type (who fails to control for x) astray. However, his individual

best-replying rules out this correlation, thus “protecting” the other type.

The general lesson is that there is a big difference between errors of causal

inference that are committed by an outside observer and those that are

committed by agents with skin in the game. However, this lesson critically
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relies on the vertical ordering of data types.

In Section 5, I enrich the notion of data types, such that DMs are allowed

to control for variables they do not condition on. For instance, in the surgical-

mask example mentioned in the opening paragraph, a DM may have access

to statistical data about the prevalence of certain genes and their correlation

with viral infection, without knowing his own genome. The DM can then

control for genetic variables without conditioning on them, by adjusting for

their correlation with the variables he does condition on. A data type in

this extended environment consists of the set of variables on which the type

has statistical data, and the subset of variables he conditions on. I extend

the analysis of the homogenous-preference case to this environment, via an

appropriate generalization of the notion of vertically ordered types.

This paper continues my line of research into decision making under

imperfect causal reasoning (Spiegler 2016,2020). The problem it poses –

quantifying the decision costs of faulty causal inference – is novel and lacks

precedents in the literature. The paper also introduces a modeling inno-

vation. While prior work has focused on DMs who misperceive the causal

mapping from actions to consequences, the DM in this paper effectively fails

to perceive that his own actions have direct causes that confound the re-

lation between actions and consequences.1 Moreover, DM types differ in

their understanding of these causes, via their different sets of controls. This

heterogeneity is what makes the problem of quantifying the decision costs of

bad controls technically non-trivial.

Appendix III shows that existing frameworks for equilibrium modeling

with non-rational expectations (Jehiel (2005), Spiegler (2016), Esponda and

Pouzo (2016)) can be adapted to incorporate the novel features, thus recast-

ing the present model in (modified) existing languages. The reason I chose to

present the model in a new language is twofold. First, it is relatively simple

and self-contained, and therefore does not require familiarity with previous

frameworks. Second, by drawing a connection with the familiar and intuitive

notion of “bad controls”and the work habits of empirical researchers, this

paper will hopefully help inspiring new research about how everyday DMs

perform causal inference.

1Clyde (2023) effectively shares this feature, by assuming that the DM forms equilib-
rium beliefs on the basis of data about proxies of states or actions, rather than data about
the variables themselves.
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2 A Model

Let a ∈ A = {0, 1} be an action that a decision maker (DM) chooses. Let
t ∈ {0, 1} be the DM’s preference type. Let y ∈ Y ⊂ [0, 1] be an outcome.

Let x = (x1, ..., xK) be a collection of exogenous variables that are realized

jointly with t, prior to the realization of a and y. Let Xk denote the finite set

of values that xk can take. For every M ⊆ {1, ..., K}, denote xM = (xk)k∈M

and XM = ×k∈MXk. I assume that x and t are the only potential causes of y

– i.e., a has no causal effect on y. This assumption is made for expositional

clarity; I will relax it in Appendix II.

The DM’s vNM utility function is u(t, a, y) = y − θ · 1[a 6= t], where

θ ∈ (0, 1) is a constant. Thus, the DM has an intrinsic motive to match his

action to his preference type; he will choose a 6= t only if he believes this

increases the expected value of y. If the DM understood that a has no causal

effect on y, he would always choose a = t.

There is a set N = {1, ..., n} of DM data types. Each type i ∈ N is

associated with a distinct subset Ci ⊆ {1, ..., K}. I refer to Ci as type i’s set
of control variables. The interpretation is that type i observes the realization

of xCi prior to making his decision; he also has access to “public”data about

the long-run statistical behavior of these variables (jointly with a and y); and

he believes that in order to learn the causal effect of a on y, he should control

for these variables.

As far as variables outside Ci are concerned, the DM type either lacks

data on them, or he thinks they are irrelevant and therefore need not be con-

trolled for. The model does not accommodate variables that are caused by

a or y as possible controls – it only focuses on exogenous, “pre-treatment”

controls. Note that t never belongs to the DM’s set of control variables. The

interpretation is that t is a private preference type, and as such it is unlikely

to enter publicly available datasets. However, note that we can always allow

one of the variables xi to be a copy of t; in this sense, the assumption does

not rule out the possibility of effectively controlling for t.

Let λ ∈ ∆(N) be the distribution of data types in the DM population.

This distribution is independent of all variables (this assumption is immate-

rial for the results in Section 3 but plays a role in Section 4). A strategy for

type (t, i) is a function σt,i : XCi → ∆(A).
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Let p be a joint probability distribution over t, x, a, y. I interpret p as a

steady-state or long-run distribution. Data type i knows p(xCi , a, y) – this

is what “having access to long-run data”about xCi , a and y means. Denote

γ = p(t = 1). The assumption that a has no causal effect on y means that

p satisfies the conditional-independence property y ⊥ a | (t, x), and hence

factorizable as follows:

p(t, x, a, y) = p(t, x)p(a | t, x)p(y | t, x)

where the term p(a | t, x) represents the DM’s average behavior across data

types:

p(a | t, x) =
∑
i∈N

λiσt,i(a | t, xCi)

This term is endogenous, whereas p(t, x) and p(y | t, x) are exogenous.

Since a DM of data type i believes that Ci is a valid set of controls, he

regards p(y | a, xCi) as a proper estimate of the probabilistic consequence of
choosing a, given his observation of xCi His perceived causal effect of a on y

given x is

∆i(x) = Ep(y | a = 1, xCi)− Ep(y | a = 0, xCi) (2)

If the DM had long-run data about all exogenous variables (including t),

he could control for all of them, and thus correctly infer the action’s null

causal effect. This is the rational-expectations benchmark for this model.

In contrast, our DM may end up believing that a has a non-zero causal

effect on y because he fails to control for some exogenous variables. In this

case, he misinterprets part of the correlation between a and y as a causal

effect, whereas in reality this correlation is entirely due to confounding by

t, x. What makes the model non-trivial is that these confounding patterns

are endogenous, as they are affected by the strategy profile. Specifically,

Ep(y | a, xCi) is not invariant to σ, since σ determines how a varies with the

unconditioned exogenous variables, t and x−Ci .

Expression (2) has the appearance of an expected-utility calculation by

a standard Savage DM who receives a signal xCi . There is a fundamental

difference, however, arising from the endogeneity of p and from its interpre-

tation as empirical frequencies from which the DM draws causal inferences.

Therefore, I refrain from referring to xCi as a signal, and further discuss the
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connection to the Savage framework in Appendix III.

As controlling for all exogenous variables is an ideal of correct causal

inference, it is natural to seek to order data types in terms of how far they

are from this ideal.

Definition 1 (Vertically ordered types) The set of data types N is ver-

tically ordered if types can be enumerated such that C1 ⊃ · · · ⊃ Cn.

When N is vertically ordered, lower-indexed data types control for a larger

set of variables. In particular, type i controls for every variable that type

j > i conditions on.

I now introduce the notion of equilibrium behavior.

Definition 2 (Equilibrium) Let ε > 0. A strategy profile σ = (σ1, ..., σn)

is an ε-equilibrium if for every i = 1, ..., n and every t, x, a′, σi(a′ | t, x) > ε

only if

a′ ∈ arg max
a
{Ep(y | a, xCi)− θ · 1[a 6= t]}

An equilibrium is a limit of a sequence of ε-equilibria for ε→ 0.

The trembling-hand aspect of the equilibrium concept ensures that all

the conditional probabilities it involves are well-defined. Trembles do not

play a role in the characterization results, with the exception of Proposition

4.

The structure of u means that in equilibrium, type i will play a 6= t with

positive probability at x only if |∆i(x)| ≥ θ. Since a has no causal effect on

y, playing a 6= t yields a welfare loss.

Definition 3 (Expected welfare loss) Given a strategy profile σ, the DM’s
expected welfare loss is

θ
∑
t,x

p(t, x)
∑
i∈N

λiσi(a 6= t | t, x) (3)

My main task in the next sections will be to derive upper bounds on this

quantity when σ is required to be an equilibrium. Without this equilibrium
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condition, the upper bound is 1. To illustrate why, suppose that t = 0 with

certainty, and that x ∈ {0, 1}. Assume y = x with certainty for every x,

and consider the strategy σ that prescribes a = x with probability one. By

definition, the probability of error is p(x = 1). If p(x = 1) ≈ 1 and θ ≈ 1,

the welfare loss is approximately 1. However, the strategy σ is inconsistent

with equilibrium. If a data type i varies his action with x, then he controls

for it and correctly estimates the null causal effect of a. As a result, he will

always play a = 0, a contradiction. It follows that the requirement that σ is

an equilibrium strategy can have bite.

Comment: The rationality benchmark. The rational-expectations bench-

mark for this model is a DM who controls for t and x. What would be a

“rational”mode of behavior for a DM given that he only has data about a

subset of potential confounders, given by C? The standard Bayesian model

assumes that in this case, the DM has a subjective prior belief over (t, x) and

updates this belief according to the signal xC . If the DM correctly believes

that the mapping from (t, x, a) to y is constant in a, then he will always play

a = t, regardless of his signal – as in the rational-expectations benchmark.

In contrast, the DM in our model ignores the variables he does not control

for. Equivalently, he assumes they are independent of all other variables.

Comment: A “persuasion” interpretation. Worst-case analysis of the DM’s

welfare can be interpreted through the prism of the small literature on

persuading boundedly rational agents (e.g., Glazer and Rubinstein (2012),

Galperti (2019), Hagenbach and Koessler (2020), Schwartzstein and Sun-

deram (2021), Eliaz et al. (2021b), and De Barreda et al. (2022)). Under

this interpretation, the DM is the receiver who takes an action. The sender’s

objective is to maximize the probability that the receiver plays a 6= t. Toward

this end, he designs a distribution over the variables the receiver observes

as signals. This is a conventional “information design”tool. The unconven-

tional aspect of this tool is that it also determines the long-run statistical

data that the receiver uses to form his belief. Worst-case analysis can thus

be viewed as finding the sender’s optimal information-cum-data provision

strategy.
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3 Analysis: Homogenous Preferences

This section characterizes the maximal welfare loss that is consistent with

equilibrium behavior, when there is no variation in the preference type t.

Specifically, assume that t = 0 with probability one (i.e., γ = 0), such that

the DM’s expected welfare loss is simply θ · Pr(a = 1). In this environment

of preference homogeneity, the only potential source of variation in the DM’s

behavior is the way the various types condition their actions on x.

For any set N of data types, there is an equilibrium in which the DM

plays a = 0 with probability one. To see why, construct the perturbation

of this strategy: Each data type i plays a = 1 with probability ε ≈ 0,

independently of xCi . By construction, a ⊥ x under this strategy profile,

and therefore ∆i(x) = 0 for every type i, such that a = 0 is the type’s

unique best-reply. The question is whether there are additional equilibria,

in which the DM commits an error with positive probability.

Example 1.1 presented a specification with homogenous preferences, in

which the equilibrium requirement completely eliminated the possibility of

decision errors. Our first result establishes that this is a general feature of

vertically ordered data-type spaces. The results in this section are special

cases of results reported in Section 5, which are based on a generalization of

the notion of vertically ordered types. Like all the results in this paper, they

are proved in Appendix I.

Proposition 1 Let γ = 0. Suppose N is vertically ordered. Then, the

unique equilibrium is for all DM types to play a = 0 with probability one. In

particular, the DM’s expected welfare loss is zero.

Thus, when γ = 0 and data types are vertically ordered, the equilibrium

requirement fully “protects”the DM from choice errors due to bad controls.

It does so by shutting down the channels through which the choice behavior

of some data types could confound the relation between other types’actions

and y. Type 1 effectively controls for all sources of correlation between a and

y. Even when he fails to control for some exogenous variables, this does not

matter because no other type conditions on them, hence they generate no

confounding effect. As a result, type 1’s subjective best-replying generates

no variation in choice behavior. This means that type 2 effectively controls
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for all potential confounders – which would not be the case if we did not im-

pose the equilibrium condition on type 1’s behavior. This equilibrium effect

spreads through the entire type space. The proof formalizes this intuition

via induction on the set of data types.

How important is the vertical ordering of data types for Proposition 1?

The following example begins to address this question.

Example 3.1: Analysts with diverse expertise

Let K = 2. All variables take values in {0, 1}, and their joint distribution
satisfies:2

p(x1 = 1) = p(x2 = 1) = β ∈ (0, 1)

p(x2 = 1 | x1 = 1) = p(x1 = 1 | x2 = 1) = q ∈ [
1

2
, 1)

p(y = 1 | x1, x2) ≡ x1x2

Let n = 2, λ1 = λ2 = 1
2
, Ci = {i}.

The following is an economic story behind this specification. A firm’s

environment is defined by financial and technological factors (represented

by x1 and x2). The firm is profitable as long as both factors are favorable.

The firm’s decision is guided by business analysis. There are two kinds of

analysts, who specialize in different aspects. Some firms base their decisions

on a financial analyst, while others base their decisions on a technological

analyst. Firms’analysts rely on the same aggregate data arising from the

decisions of both types of firms, but each analyst has tunnel vision and

neglects the aspect outside his area of expertise. This is an instance of

“horizontal”differentiation between data types.

Consider the following strategy profile: Each type i = 1, 2 always plays

a = xi. I will show that this profile constitutes an equilibrium. Begin by

calculating type 1’s subjective estimate of actions’causal effect on profits,

given his information. Observe that since y = x1x2 independently of a,

p(y = 1 | a, x1 = 1) = p(x2 = 1 | a, x1 = 1)

p(y = 1 | a, x1 = 0) = 0

2Presenting these marginal and conditional distributions suffi ces and is more convenient
for our purposes; there is no need for full specification of p.
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for every a. Note that these quantities never involve conditioning on a zero-

probability event. For example, the combination a = 0, x1 = 1 arises when

x2 = 0 and the DM is of type 2.

Thus, we only need to calculate two conditional probabilities, given the

DM’s postulated strategy. First, p(x2 = 1 | a = 1, x1 = 1) is equal to

p(x1 = 1)p(x2 = 1 | x1 = 1)p(a = 1 | x1 = 1, x2 = 1)

p(x1 = 1)
∑

x2
p(x2 | x1 = 1)p(a = 1 | x1 = 1, x2)

=
q(λ1 · 1 + λ2 · 1)

q(λ1 · 1 + λ2 · 1) + (1− q)(λ1 · 1 + λ2 · 0)

=
q

q + 1
2
(1− q)

Second,

p(x2 = 1 | a = 0, x1 = 1) = 0

since the combination (a = 0, x1 = 1) cannot arise when x2 = 1, given the

strategy profile. It follows that

∆1(x1 = 1) =
q

q + 1
2
(1− q)

− 0 =
2q

1 + q

If 2q/(1 + q) > θ, type 1 will prefer to play a = 1 when x1 = 1. In addition,

we established that ∆1(x1 = 0) = 0− 0 = 0. Therefore, type 1 will prefer to

play a = 0 when x1 = 0. The same calculations apply to type 2.

It follows that as long as q > θ/(2 − θ), the postulated strategy profile
is an equilibrium. The equilibrium error probability (i.e., Pr(a = 1)) is β,

which can be arbitrarily close to one – hence, the equilibrium welfare loss

can be as large as the non-equilibrium benchmark. In this case, equilibrium

forces do not “protect”DMs from their errors of causal inference.

The intuition behind this result is that since type i varies his action with

xi yet fails to control for xj, each type creates a confounding effect that

“fools”the other type. For example, type 1 is vulnerable to interpreting the

residual correlation between a and y after controlling for x1 – which exists

because of type 2’s strategy – as a causal effect. This residual correlation

can be seen from our calculation of p(y = 1 | a, x1 = 1).

The result does not necessitate correlation between x1 and x2. Even

when q = 1
2
, the above equilibrium can be sustained as long as θ < 2

3
. The
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reason is that although the DM types in this case condition their actions on

independent exogenous variables, their subjective causal estimates involve

conditioning on a (a variable whose distribution records the DM’s aggregate

behavior). Since this variable is a common consequence of x1 and x2, condi-

tioning on it creates correlation between otherwise independent variables.

The equilibrium welfare loss is non-monotone with respect to the data

types’sets of control variables. For example, suppose C1 = {1} and C2 = ∅
– i.e., type 2 now does not control for any variable. In this case, the

type space is vertically ordered; and by Proposition 1, neither DM type will

commit an error in equilibrium. It follows that expanding one type’s set of

control variables can be detrimental for all types’welfare. �

The following result generalizes this example: Whenever the data-type

space is not vertically ordered, the tight upper bound on the DM’s equilib-

rium welfare loss is 1.

Proposition 2 Let γ = 0. Suppose N is not vertically ordered. Then, for

any θ, β ∈ (0, 1), there exist λ and (p(x, y)) such that Pr(a = 1) > β in some

equilibrium. In particular, when θ ≈ 1, the equilibrium welfare loss can be

arbitrarily close to 1.

Thus, when types are not vertically ordered, equilibrium forces do not

curb the welfare loss due to faulty causal inference. The reason is that the

equilibrium behavior of different types can create confounding patterns that

mutually sustain their inference errors.

4 Analysis: Heterogeneous Preferences

In this section I reintroduce preference heterogeneity, by assuming γ ∈ (0, 1).

The significance of this degree of freedom is that it implies an intrinsic motive

for the DM to vary his behavior with an exogenous variable. By comparison,

in the homogenous-preference case, the DM would vary his behavior with an

exogenous variable only when he (erroneously) concluded that it influences

the causal effect of a on y. Denote δt = Ep(y | t). Without loss of generality,
assume δ1 ≥ δ0.
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Example 4.1: Choosing a college major

Let y ∈ {0, 1}. Suppose δt = p(y = 1 | t) = t. Thus, y = 1 if and only if

t = 1. Let K = 0 and n = 1 – i.e., there is a unique data type, C = ∅. I
assume γ 6= θ, to rule out an annoying knife-edge case.

One economic story behind this specification is that a represents a stu-

dent’s decision whether to select a math-intensive major in college; t indi-

cates whether he likes math; and y represents his subsequent earnings. The

student learns the correlation between a and y. He has no access to control

variables, and ends up treating the correlation as causal. The assumption

that δt ≡ t means that fondness for math is perfectly correlated with math

skills that determine earnings, independently of the student’s decision.

I will now establish uniqueness of equilibrium in this setting, and charac-

terize the DM’s equilibrium welfare loss. The DM’s estimated causal effect

of a on y is

∆ = p(y = 1 | a = 1)− p(y = 1 | a = 0)

Denote αt = σ(a = 1 | t). By the DM’s preferences, α1 ≥ α0. Now obtain

explicit expressions for the terms that define ∆:

p(y = 1 | a = 1) =
γ · α1 · δ1 + (1− γ) · α0 · δ0

γ · α1 + (1− γ) · α0

p(y = 1 | a = 0) =
γ · (1− α1) · δ1 + (1− γ) · (1− α0) · δ0

γ · (1− α1) + (1− γ) · (1− α0)

A simple calculation establishes that since δ1 > δ0 and α1 ≥ α0, we must

have ∆ ≥ 0. This in turn implies that α1 ≥ 1− ε in ε-equilibrium, because
when t = 1, the DM perceives no conflict between his intrinsic taste for a = t

and the estimated effect of his choice on y. Plugging the known expressions

for α1 and δt and taking the ε→ 0 limit, we obtain

∆ =
γ

γ + (1− γ) · α0

If α0 ≤ ε in ε-equilibrium, then ∆ → 1 in the ε → 0 limit. But then,

∆ > θ, hence playing a = 1 at t = 0 is subjectively optimal, in contradiction

to α0 ≤ ε. It follows that α0 > 0 in equilibrium. There are two cases to

consider. First, suppose α0 ∈ (0, 1). This requires ∆ = θ (and therefore
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γ < θ), such that

α0 =
γ(1− θ)
(1− γ)θ

Since the DM only commits an error in equilibrium when t = 0, his expected

equilibrium welfare loss is

θ · (1− γ) · α0 = γ(1− θ) < γ(1− γ)

By setting θ ≈ γ, we can get arbitrarily close to the upper bound of γ(1−γ).

Second, suppose α0 = 1. This requires us to sustain this equilibrium

with suitable trembles. Specifically, suppose α1 = 1− ε2 and α0 = 1− ε. As
ε → 0, we obtain p(y = 1 | a = 1) ≈ γ and p(y = 1 | a = 1) ≈ 0. If γ > θ,

this is consistent with equilibrium. The DM’s welfare loss in this equilibrium

is

θ · (1− γ) · 1 < γ(1− γ)

Again, by setting θ ≈ γ, we can get arbitrarily close to the upper bound.

Thus, for any configuration of θ and γ, there is a unique equilibrium

in this setting. The DM’s equilibrium welfare loss in this equilibrium is

always below γ(1− γ). This bound can be approximated arbitrarily well by

setting θ ≈ γ. The trembling-hand aspect of our equilibrium concept is not

necessary for the upper bound.

As in earlier examples, equilibrium forces in Example 4.1 “protect”the

DM from causal errors, by pushing his welfare loss below γ(1 − γ) – com-

pared with the non-equilibrium benchmark of 1. The intuition is as follows.

The DM mistakes the correlation between a and y for a causal effect. This

correlation is large when a varies strongly with t; it hits the maximal level

when a always coincides with t. However, that extreme case is precisely

when the DM commits no error. At the other extreme, if the DM almost

always plays a = 1 because his estimated causal effect of a on y is above θ,

the frequency of the DM’s error is maximal. However, since in this case a

varies little with y, the estimated causal effect is small. In general, a larger

estimated causal effect goes hand in hand with a lower equilibrium frequency

of making a decision error. This is why equilibrium behavior limits the DM’s

expected cost of failing to control for x. �
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Let us now turn to a characterization of the upper bound on the DM’s

equilibrium welfare loss, for a restricted domain of data-generating processes.

Specifically, I assume that p(y | t, x) ≡ p(y | t) – i.e., y ⊥ x | t. This
fits situations in which the DM’s preference type is a suffi cient statistic for

determining the outcome; the x variables are merely observable correlates of

this statistic. For instance, whether a student regards studying as a costly

or pleasurable activity is the cause of her school performance. This latent

attitude may be correlated with observable characteristics, but these are only

indirect causes, or mere proxies for the true cause.

Proposition 3 Suppose N is vertically ordered. If y ⊥ x | t, then the DM’s
expected welfare loss in equilibrium is at most γ(1− γ).

Example 4.1 established the tightness of this upper bound. Proposition

3 also means that across all distributions that satisfy y ⊥ x | t, the expected
welfare loss is at most 1

4
– compared with the non-equilibrium upper bound

of 1. When γ → 0, the loss converges to zero. (This limit case is not a

special case of Section 3, because it implies x ⊥ y.)

As in the case of Proposition 1, the proof of Proposition 3 proceeds by

induction on the set of data types, starting with type 1, whose set of con-

trols is the largest. Although this type controls for every x variable the other

data types condition on, this does not mean he is immune to neglecting con-

founders, because he fails to control for the preference type t. Furthermore,

since this type varies his behavior with t, he exerts a “confounding external-

ity”on the other data types. This makes the inductive proof considerably

more intricate. A key argument in the proof is that while data types may

disagree on the magnitude of the causal effect of a on y, they all agree on its

sign, which is positive (since δ1 > δ0). This feature holds in any equilibrium

when the type space is vertically ordered.

Example 4.2: Choosing a college major, revisited

To further illustrate the heterogeneous-preference model, enrich Example 4.1

by letting K = 1 and n = 2. The exogenous variable is x ∈ {0, 1}. This is an
observable proxy for t, whose conditional distribution is p(x = t | t) = q ∈
(1
2
, 1) for every t. The two data types are C1 = {1} and C2 = ∅. That is, type

1 controls for x while type 2 does not. The DM population includes both
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types: λ1, λ2 > 0. In the context of the college-major story, x may represent

the student’s high-school math performance. The “sophisticated” type 1

has data that enables him to control for x when estimating the correlation

between major choice and subsequent earnings. The “naive” type either

lacks the data or finds it irrelevant.

In this environment, it is natural to predict that unlike the naive type,

the sophisticated type’s ability to control for x may protect him from falsely

inferring that a causes y. Thus, let us postulate the following strategy profile:

Type 1 always plays a = t; while type 2 plays a = 1 with probability one

(α) when t = 1 (0). Under this strategy profile, only the naive type can ever

commit decision errors. Let us check whether this kind of strategy profile

can be an equilibrium.

Note that p(y = 1 | a = 0, x) = 0 for every x – hence, p(y = 1 | a = 0) =

0 – since y ≡ t and neither type ever plays a = 0 when t = 1. Therefore,

∆2 = p(y = 1 | a = 1) and ∆1(x) = p(y = 1 | a = 1, x). In addition,

p(y = 1 | a = 1) =
γ · 1

γ · 1 + (1− γ) · λ2 · α
(4)

and

p(y = 1 | a = 1, x = 1) =
γ · q · 1

γ · q · 1 + (1− γ) · (1− q) · λ2 · α
(5)

If α = 0 (such that neither type ever plays a 6= t), ∆2 = 1 > θ, hence

type 2 wants to deviate to a = 1 at t = 0, a contradiction. Now suppose

α > 0. Then, ∆2 ≥ θ. Since type 1 plays a = t at x = 1, ∆1(x = 1) ≤ θ.

Plugging (4)-(5) in these inequalities, we obtain a contradiction.

It follows that there is no equilibrium in which type 1 never plays a 6= t.

No matter how accurate x is as a proxy of t, it cannot fully protect the

sophisticated type from his failure to control for t, when equilibrium effects

are taken into account. �

When data types are not vertically ordered, the tight upper bound on the

DM’s expected welfare loss (under the restriction y ⊥ x | t) is significantly
higher.
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Proposition 4 Suppose N is not vertically ordered. If y ⊥ x | t, then the
DM’s expected welfare loss in equilibrium is at most max(γ, 1 − γ). When

|Xk| ≥ 3 for all k, this upper bound can be approximated arbitrarily well, by

appropriately selecting θ, λ and (p(x, y | t)).

This result carries the relevance of vertical ordering of data types to the

heterogeneous-preferences setting. The gap between the upper bounds in

the two cases – γ(1− γ) vs. max(γ, 1− γ) – is significant, and gets more

so as the preference type distribution becomes more unbalanced. To attain

the upper bound given by Proposition 4, I use trembles and also require

exogenous x variables to take at least three values. Whether these elements

in the construction are indispensable is an open question. Finally, unlike

the case of vertically ordered types, different data types may disagree on

the causal effect’s sign; indeed, this feature plays an important role in my

implementation of the upper bound.

The final result in this section lifts all restrictions on (p(x, y | t)) and the
set of data types, and shows that in this case, the gap between equilibrium

and non-equilibrium upper bounds on the DM’s welfare loss disappears.

Proposition 5 Suppose N is not vertically ordered. For every γ, θ ∈ (0, 1),

there exist λ and (p(x, y | t)) for which there is an equilibrium in which

Pr(a 6= t) = 1.

The results in this section leave two open problems. First, does the upper

bound γ(1−γ) obtained for vertically ordered types extend to distributions p

that violate y ⊥ x | t? Second, how do results change when the distribution
over data types is allowed to be correlated with t and x?

5 Controlling without Conditioning

So far, we have assumed that the DM conditions on every variable he controls

for. This is a natural assumption in many settings – e.g., when x variables

are demographic or socioeconomic characteristics. Agents are likely to be

informed of their own age, ethnicity and parental education, at least as

much as they are likely to know the population-level distribution of these

characteristics.
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However, in some cases it makes sense to assume that the DM has access

to statistical data about variables, without knowing their realization at the

moment of choice. For example, a firm may know how its performance is cor-

related with macroeconomic indicators, yet it need not know their current

value when making its business decisions because the indicators are pub-

lished with delay. In such cases, the DM can still control for such variables,

even when he cannot condition on their realization. I refer to this mode of

controlling as adjustment as opposed to conditioning.

To accommodate this distinction, extend the definition of a data type,

so that it consists of a distinct pair (C,D) of subsets of {1, ..., K}, where
C ⊆ D. The set D represents the type’s control variables – i.e., the vari-

ables on which he has long-run statistical data (such that he knows their

joint distribution with a and y). The set C represents the variables whose

realization he learns before making his decision. The assumption that C ⊆ D

means that if the DM conditions on a variable, he must have long-run data

about it. In principle, one can imagine situations in which agents know the

realization of a variable without having data about its long-run statistical

behavior. For instance, the DM may know his height but lack access the

statistics about how height is correlated with the outcome of interest. How-

ever, in the absence of such data, the DM cannot make use of his height

information, and therefore, we might as well assume that he lacks it. This

is the justification for the assumption that C ⊆ D.

The DM’s estimated causal effect of switching from a = 0 to a = 1 (given

x) is

∆i(x) =
∑
xD\C

p(xD\C | xC) [Ep(y | a = 1, xD)− Ep(y | a = 0, xD)] (6)

Thus, controlling for xD involves conditioning on xC and adjusting for xD\C .

Example 5.1: Adjusting for an irrelevant variable

This example illustrates the danger of excessive controlling for “pre-treatment”

variables, independently of equilibrium considerations. It is adapted from

Cinelli et al. (2022), a guide to “good and bad controls” that (following

Pearl (2009)) makes use of the formalism of directed acyclic graphs (DAGs).
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Suppose that the true causal structure underlying p is given by the DAG

a← x1 → x3 ← x2 → y

All variables take values in {0, 1}; x1 and x2 are uniformly distributed; y = x2

and x3 = x1x2 with certainty; and p(a = x1 | x1) = 1 − ε for all x1, where
ε ≈ 0. The objective causal effect of a on y is null because there is no causal

path from a to y. Moreover, Ep(y | a = 1) − Ep(y | a = 0) is a correct

formula for the objective (null) causal effect. In other words, there is no

need to control for any of the x variables.

Suppose, however, that one of the DM types has C = ∅ and D = {3}
– i.e., he does not condition on any variable, while adjusting for x3.3 The

type’s estimated causal effect is∑
x3

p(x3)[Ep(y | a = 1, x3)− Ep(y | a = 0, x3)] (7)

Under the specification of p, we can calculate that p(y = 1 | a, x3 = 1) = 1

for every a, whereas

p(y = 1 | a = 1, x3 = 0) ≈ 0

p(y = 1 | a = 0, x3 = 0) ≈ 1

2

Plugging these values in (7), we obtain a non-null estimated causal effect.

The intuition is as follows. Because x3 is a common consequence of x1 and

x2 (which are correlated with a and y, respectively), it is not necessarily true

that a ⊥ y | x3. Therefore, x3 is a bad control, and the DM’s estimate can
be biased. �

The following definition adapts the concept of ε-equilibrium to the present

setting (the definition of equilibrium is derived from ε-equilibrium, just as

in Section 2).

3The absence of a direct link from x3 into a in the DAG is consistent with no DM type
conditioning on x3 – i.e., this variable does not enter any data type’s set C.
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Definition 4 Let ε > 0. A strategy profile σ = (σ1, ..., σn) is an ε-equilibrium

if for every i = 1, ..., n and every t, x, a′, σi(a′ | t, x) > ε only if

a′ ∈ arg max
a

 ∑
xDi\Ci

p(x
Di\Ci

| xCi)Ep(y | a, xCi)− θ · 1[a 6= t]


I now extend the notion of vertically ordered types. Define a binary

relation P over data types: iP j if Di ⊇ Cj. The meaning of iP j is that data

type i controls for every variable that type j conditions on. Since Di ⊇ Ci

for every i ∈ N , P is reflexive. Let P ∗ be the asymmetric (strict) part of P

– i.e., iP ∗j if iP j and j /Pi. Following Sen (1969), P is quasitransitive if P ∗

is transitive. We say that type i is P ∗-undominated in a set of types M , if

there is no j ∈M such that jP ∗i. The following observation is standard.

Remark 1 Suppose P is complete and quasitransitive. Then, N can be

partitioned into L classes, N1, ..., NL, such that: (i) N1 consists of all P ∗-

undominated types in N ; and (ii) for every ` > 1, N` consists of all P ∗-

undominated types in N \ (∪h<`Nh).

The partition induced by a complete and quasitransitive P is the ex-

tended model’s analogue of vertical ordering of types. When Ci = Di for

all i ∈ N , it collapses to the original definition, which orders types via set
inclusion.

The following results extend the worst-case analysis of Section 3 (ho-

mogenous preferences).

Proposition 6 Let γ = 0. Suppose P is complete and quasitransitive.

Then, the unique equilibrium is for all DM types to play a = 0 with proba-

bility one. In particular, the DM’s expected welfare loss is zero.

Proposition 7 Let γ = 0. Suppose P violates completeness or quasitran-

sitivity. Then, for any θ, β ∈ (0, 1), there exist λ and (p(x, y)) such that

Pr(a = 1) > β in some equilibrium. In particular, when θ ≈ 1, the equilib-

rium welfare loss can be arbitrarily close to 1.
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The proof of Proposition 6 is by induction on the partition induced by

P . Types in the top layer N1 effectively control for all sources of correlation

between a and y. Even when a top-layer type does not control for some

exogenous variable, this does not matter because no other type conditions

on this variable, hence it generates no confounding effect. As a result, top-

layer types’subjective best-replying implies that they do not generate any

variation in choice behavior. This means that types in the next layer N2
effectively control for all potential confounders – which would not be the

case if we did not impose the equilibrium condition on the behavior of top-

layer types. This equilibrium effect infects all layers of the partition.

Proposition 7 shows the other side of the “bang-bang”characterization.

When P is incomplete or not quasitransitive, the equilibrium requirement

does not constrain the maximal possible welfare loss due to bad controls.

The proof is constructive, involving more elaborate versions of Example 3.1.

In particular, when P is complete but not quasitransitive, the construction

involves data types.

Thus, as in Section 3, the distinction between type spaces that are ver-

tically ordered and those that are not is crucial for the worst-case analysis.

The contribution of this section is to provide the appropriate extension of

the vertical ordering to settings in which the DM may control for variables

he does not condition on. Extending this analysis to environments with

heterogeneous preferences is an open problem.

6 Conclusion

When DMs draw causal inferences from observed correlations, they may

commit errors if they fail to control for an appropriate set of confounding

variables. This paper examined a model of this error, when DMs rely on

endogenous datasets and may differ in their sets of control variables. Since

DMs’causal inferences determine how they condition their actions on their

signals, and since this response in turn shapes the very correlations from

which DMs draw their inferences, equilibrium analysis is required to evaluate

the decision cost of erroneous causal inference due to bad controls.

The general insight that emerged from this analysis was that when DM

types are “vertically” differentiated in terms of the sets of their control
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variables, the equilibrium cost of bad controls is significantly lower than

the non-equilibrium benchmark, and sometimes it completely vanishes. I

substantiated the role of vertical differentiation by showing that the upper

bound on the welfare loss is significantly higher when types are not verti-

cally ordered. Indeed, in some cases the distinction between equilibrium and

non-equilibrium welfare losses completely vanishes.

Of course, worst-case analyses have a built-in limitation: The worse the

worst case gets, the less useful it is. This is why the results on vertically

ordered type spaces are more meaningful, whereas the role of the complemen-

tary results is to put the results on vertically ordered spaces in perspective.

Of course, there are economic settings in which we want to assume different

typologies of DMs in terms of how they perform causal inference. I hope to

explore some of these in future work.

On a speculative note, the results on vertically ordered type spaces sug-

gest that failure to use proper controls, which is a grave error for academic

researchers, may not be such a big problem for everyday decision-making,

thanks to the corrective equilibrium forces. Could this be one of the reasons

this error of causal inference is so ubiquitous in real life?
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Appendix I: Proofs
The proofs are presented out of order, because Propositions 1 and 2 are

special cases of Propositions 6 and 7.

Proposition 6

I will show that a = 0 with probability one in equilibrium. The proof

is by induction with respect to the partition induced by P . Consider an

arbitrary type i in the top layer N1. This type satisfies Di ⊇ Cj for all

j ∈ N . Hence, there is no x variable outsideDi that any DM type conditions

his action on. Since t is constant, this means that y ⊥ a | xDi – i.e.,

p(y | a, xDi) = p(y | xDi). Formula (6) then implies that ∆i(x) = 0. It

follows that in equilibrium, type i plays a = 0 for all x.

Suppose the claim holds for all types in the top m layers in the partition,

and now consider an arbitrary type i in the (m+ 1)-th layer. By definition,

Di ⊇ Cj for every type j outside the top m layers of the partition. As to

types in the top m layers, by the inductive step these types play a constant

action a = 0 in any equilibrium – i.e., there is no variation in their action.

It follows that if p is consistent with equilibrium, then y ⊥ a | xDi . Formula
(6) then implies ∆i(x) = 0. It follows that in equilibrium, type i plays a = 0

for all x. �

Proposition 7

Suppose first that P is incomplete. Then, there exist two types, denoted

conveniently 1 and 2, such that C1 \D2 and C2 \D1 are non-empty. Select

two variables in C1 \ D2 and C2 \ D1, and denote them 1 and 2 as well,

respectively. Suppose that λ1 = λ2 = 1
2
. Construct p as follows. First, let

x1, x2, y ∈ {0, 1}, and

p(x1 = 1, x2 = 1) = 1− ε
p(x1 = 0, x2 = 1) = p(x1 = 1, x2 = 0) =

ε

2

where ε > 0 is arbitrarily small. Second, let p(y = 1 | x1, x2) = x1x2. Thus,

x1 and x2 are the only x variables that determine y, and so we can afford

to ignore all other x variables. Given this specification of λ and p(x, y),

we can construct an equilibrium in which for each type i = 1, 2, ai = xi
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with probability one – exactly as in Example 3.1 – such that Pr(a = 1) is

arbitrarily close to one.

Now suppose that P is complete but not quasitransitive. This means

that P ∗ must have a cycle of length 3 – that is, we can find three types,

denoted 1, 2, 3, such that 1P ∗2, 2P ∗3 and 3P ∗1 – that is, D1 ⊇ C2, D2 ⊇ C3

and D3 ⊇ C1. Since P ∗ is asymmetric by definition, this means that for

each of the three types i = 1, 2, 3, there is a distinct variable in {1, ..., K},
conveniently denoted i as well, such that 1 ∈ C1 \ D2, 2 ∈ C2 \ D3 and

3 ∈ C3 \D1. Suppose λ1, λ2, λ3 > 0 and λ1 + λ2 + λ3 = 1. Let x1, x2, x3, y ∈
{0, 1}. Construct p as follows: First,

p(x1 = 1, x2 = 1, x3 = 1) = 1− ε

and

p(xi = 0, xj = xk = 1) =
ε

3

for every i = 1, 2, 3 and j, k 6= i, where ε > 0 is arbitrarily small. Second, let

p(y = 1 | x1, x2, x3) = x1x2x3. Thus, x1, x2, x3 are the only x variables that

determine y, and so we can afford to ignore all other x variables. Suppose

each type i = 1, 2, 3 plays a = xi with probability one. Using essentially the

same calculation as in the case of incomplete P , we can see that for every

i = 1, 2, 3, ∆i(xi = 0) = 0, whereas ∆i(xi = 1) → 1 as ε → 0. Therefore,

the postulated strategy profile is an equilibrium. �

Proposition 3

The proof proceeds stepwise. Recall that since P is complete, it is a lin-

ear ordering. For convenience, enumerate the types according to P – i.e.,

1P2P · · ·Pn. For every x and every C ⊆ {1, ..., K}, denote γ(x) = p(t = 1 |
x) and γ(xC) = p(t = 1 | xC).

Step 1: Deriving an expression for ∆i(x)

Proof : Since y ⊥ (a, x) | t, we can write

p(y | a, xCi) =
∑
t

p(t | a, x
Ci

)p(y | a, xCi , t) =
∑
t

p(t | a, xCi)p(y | t)
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Plugging this in (2), we obtain

∆i(x) = [p(t = 1 | a = 1, xCi)− p(t = 1 | a = 0, xCi)][δ1 − δ0] (8)

We have thus derived an expression for ∆i(x). �

Step 2: For every x, ∆1(x) ≥ 0 and σ1(a = 1 | t = 1, xC1) = 1.

Proof : For every a, the terms p(t = 1 | a, xCi) in (8) can be written as

γ(xCi)p(a | t = 1, xCi)

γ(xCi)p(a | t = 1, xCi) + (1− γ(xCi))p(a | t = 0, xCi)
(9)

Consider the terms p(a | t, xC1) in (9). Note that

p(a | t, xC1) =
∑
x−C1

p(x−C1 | t, xC1)p(a | t, xC1 , x−C1 ) (10)

By definition, C1 ⊃ Cj for every j > 1. This means that no data type j

conditions his actions on x−C1 . Therefore, (10) is equal to

n∑
j=1

λjσj(a | t, xCj)

By the DM’s preferences, σi(a = 1 | t = 1, xCi) ≥ σi(a = 1 | t = 0, xCi)

in any equilibrium, for every i, x. It follows that p(a = 1 | t = 1, xC1) ≥
p(a = 1 | t = 0, xC1) for every xC1 . A simple calculation then confirms that

the expression (9) is weakly increasing in a for i = 1. Since δ1 − δ0 ≥ 0,

∆1(x) ≥ 0. �

Step 3: Extending Step 2 to all data types
Proof : The proof is by induction on P . Suppose that for every type j =

1, ...,m, ∆j(x) ≥ 0 and σj(a = 1 | t = 1, xCj) = 1. Now consider type

i = m+ 1. We can write

p(a | t, xCi) =
∑
x−Ci

p(x−Ci | t, xCi)
[∑
j≤m

λjσj(a | t, xCj) +
∑
j>m

λjσj(a | t, xCj)
]

By the inductive step,

σj(a = 1 | t = 1, xCj) = 1 ≥ σj(a = 1 | t = 0, xCj)
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for every j ≤ m. By definition, Cj ⊆ Ci for every j > m, hence σj(a | t, xCj)
is constant in x−Ci . Therefore,

p(a = 1 | t = 1, xCi) =
∑
j≤m

λj · 1 +
∑
j>m

λjσj(a | t = 1, xCj)

We already observed that

σj(a = 1 | t = 1, xCj) ≥ σj(a = 1 | t = 0, xCj)

for every xCj . It follows that

p(a = 1 | t = 1, xCi) =
∑
j≤m

λj · 1 +
∑
j>m

λjσj(a | t = 1, xCj)

≥
∑
x−Ci

p(x−Ci | t, xCi)
[∑
j≤m

λjσj(a | t = 0, xCj) +
∑
j>m

λjσj(a | t = 0, xCj)

]
= p(a = 1 | t = 0, xCi)

As in the proof of Step 2, applying this inequality to (9) implies that∆i(x) ≥
0 and σi(a = 1 | t = 1, xCi) = 1. This completes the inductive proof. �

Interlude: Step 3 and Simpson’s paradox

Before turning to the next step in the proof, it may be helpful to pause and

discuss the significance of the proof of Step 3. In both Steps 2 and 3, the

key to proving that the DM’s estimated causal effect of a on y is always

non-negative is showing that p(a = 1 | t = 1, xCi) ≥ p(a = 1 | t = 0, xCi)

for every xCi – i.e., that the DM’s average behavior conditional on xCi is

increasing in t, for every x, i. In general, this need not be the case, despite

the fact that p(a = 1 | t, x) =
∑

i λiσi(a = 1 | t = 0, xCi) is increasing in t

for every x. The reason is that p(a | t, xCi) marginalizes p(a = 1 | t, x) over

x−Ci . The observation that monotonicity of conditional probabilities is not

always preserved under marginalization is known as Simpson’s paradox (see

Pearl (2009)). The challenge of the proof of Steps 2 and 3 is to ensure that

Simpson’s paradox is moot in the present context.

Step 4: An upper bound on the expected equilibrium welfare loss given x

Proof : We have established that in any equilibrium, all data types play
a = 1 with probability one when t = 1. Therefore, they only commit an error
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if they play a = 1 with positive probability when t = 0. Fix the realization of

x. Let i(x) be the lowest-indexed type j for which σj(a = 1 | t = 0, xCj) > 0.

Then, the DM’s expected welfare loss given x is

θ(1− γ(x))

n∑
j=i(x)

λjσj(a = 1 | t = 0, xCj)

In order for type i(x) to play a = 1 given x and t = 0, it must be the case

that θ ≤ ∆i(x)(x). By Step 3, σj(a = 1 | t = 1, xCj) = 1 for all j, hence

p(a = 1 | t = 1, xCi(x)) = 1. Plugging this identity into (8)-(9) and recalling

that 0 ≤ δ1 − δ0 ≤ 1, we obtain

∆i(x)(x) ≤
γ(xCi(x))

γ(xCi(x)) + (1− γ(xCi(x)))p(a = 1 | t = 0, xCi(x))

Since Cj ⊆ Ci for every j for which σj(a = 1 | t = 0, xCj) > 0, it follows

that none of these types j condition on x−Ci(x). Therefore,

p(a = 1 | t = 0, xCi(x)) =

n∑
j=i(x)

λjσj(a = 1 | t = 0, xCj)

Denote this quantity by α. This means that the DM’s expected welfare loss

given x is at most

γ(xCi(x))

γ(xCi(x)) + (1− γ(xCi(x)))α
· (1− γ(x)) · α

This expression attains its maximal value when α = 1. Therefore, the fol-

lowing expression

(1− γ(x))γ(xCi(x)) = (1− γ(x)) ·
∑
x′

p(x′ | x′Ci(x) = xCi(x))γ(x′)

is an upper bound on the DM’s expected welfare loss given x. �

Step 5: Deriving the upper bound on the DM’s ex-ante expected equilibrium
welfare loss
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Proof : By Step 4, the ex-ante welfare loss is at most∑
x

p(x)(1− γ(x)) ·
∑
x′

β(x′, x)γ(x′) (11)

where β(x′, x) = p(x′ | x′Ci(x) = xCi(x)). The coeffi cients β(·) constitute a
system of convex combinations. Expression (11) is a concave function of

(γ(x))x. By Jensen’s inequality, it attains a maximum when γ(x) = γ for

all x, such that the upper bound on the DM’s expected equilibrium welfare

loss is γ(1− γ). �

Proposition 4

(i) Deriving the upper bound
Let γ ≥ 1

2
, without loss of generality, such that max{γ, 1− γ} = γ. Suppose

there is an equilibrium in which the DM’s expected welfare loss exceeds γ.

To reach a contradiction, the proof proceeds stepwise.

Step 1: Deriving a necessary condition
Proof : If the expected equilibrium welfare loss exceeds γ, then p(a = 1 |
t = 0) > 0. Thus, there exist x and i such that σi(a = 1 | t = 0, x) > 0.

Denote

X∗i = {x | σi(a = 1 | t = 0, x) > 0}

Define

Bt(x, i) =

{ ∑
x′|x′Ci=xCi

p(x′ | t)p(a = 1 | t, x′) if X∗i 6= ∅
0 if X∗i = ∅

Note that whether x ∈ X∗i only depend on xCi . Likewise, Bt(x, i) is effec-
tively a function of xCi .

By the equilibrium condition, every x ∈ X∗i must satisfy

p(t = 1 | a = 1, xCi)− p(t = 1 | a = 0, xCi) ≥ p(t = 1 | a = 1, xCi)

=
γB1(x, i)

γB1(x, i) + (1− γ)B0(x, i)
≥ θ

which can be written equivalently as

B0(x, i) ≤
γ(1− θ)
θ(1− γ)

B1(x, i) (12)
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Summing Bt(x, i) over xCi yields

B̄t(i) =
∑
x∈X∗i

p(x | t)p(a = 1 | t, x) (13)

Performing this summation over xCi on both sides of (12) implies

B̄0(i) ≤
γ(1− θ)
θ(1− γ)

B̄1(i)

for every i for which X∗i 6= ∅. (Note that B̄t(i) = 0 when X∗i = ∅.) It follows
that a necessary condition for the welfare loss to exceed γ is

max
i
B̄0(i) ≤

γ(1− θ)
θ(1− γ)

max
i
B̄1(i) (14)

Note that

p(a = 1 | t, x) =
n∑
j=1

λjσj(a = 1 | t, x)

Using this observation and (13), we can reformulate (14) as follows. Every

x is assigned a subset of types M(x) = {i | x ∈ X∗i }. The joint distribution
p over (t, x) and the strategy profile σ induce a distribution µ over M , such

that

µ(M) = p({i | x ∈ X∗i } = M | t = 0)

Denote

λ∗j = λj
∑
x

p(x | t = 0, x ∈ X∗j )σj(a = 1 | t = 0, x)

Then, (14) can be rewritten as

max
i

∑
M |i∈M

µ(M)
∑
j∈M

λ∗j ≤
γ(1− θ)
θ(1− γ)

max
i
B̄1(i) (15)

This inequality is a necessary condition for the equilibrium welfare loss to

exceed γ. �

Step 2: The following inequality holds:

max
i

∑
M |i∈M

µ(M)
∑
j∈M

λ∗j ≥
(∑

M

µ(M)
∑
j∈M

λ∗j

)2
(16)
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Proof :4 If we prove that

∑
M |i∈M

µ(M)
∑
j∈M

λ∗j∑
k λ
∗
k

≥
(∑

M

µ(M)
∑
j∈M

λ∗j∑
k λ
∗
k

)2

then this will immediately imply (16) because
∑

k λ
∗
k ≤ 1. Therefore, we can

assume without loss of generality that
∑

j λ
∗
j = 1. Moreover, I will prove a

more demanding inequality:

∑
i

λ∗i
∑
M |i∈M

µ(M)
∑
j∈M

λ∗j ≥
(∑

M

µ(M)
∑
j∈M

λ∗j

)2
(17)

The L.H.S of this inequality can be written equivalently as

∑
M

µ(M)
∑
i∈M

λ∗i
∑
j∈M

λ∗j =
∑
M

µ(M)

(∑
j∈M

λ∗j

)2

Denote

z(M) =
∑
j∈M

λ∗j

We can regard z(M) as a real-valued random variable whose distribution is

determined by the distribution µ. The expression

∑
M

µ(M) (z(M))2 −
(∑

M

µ(M)z(M)

)2

is the variance of this random variable, which is non-negative by definition.

This proves (17), and consequently the result. �

Step 3: Reaching a contradiction
Denote

β = max
i
B̄1(i)

By the definition of B̄1 given by (13), β is a lower bound on Pr(a = 1 | t = 1).

Therefore,

Pr(t = 1, a = 0) ≤ γ − γβ
4This proof is due to Omer Tamuz.
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Furthermore, Pr(a = 1 | t = 0) is by definition∑
x

Pr(x | t = 0) Pr(a = 1 | t = 0, x) =
∑
M

µ(M)
∑
j∈M

λ∗j

Applying Step 2, the DM’s expected equilibrium welfare loss is bounded

from above by

θ ·
[
γ − γβ + (1− γ)

√
γ(1− θ)β
θ(1− γ)

]
which by assumption exceeds γ. Rewriting this inequality as

θ ·
[
γ − γβ +

√
γ(1− γ)(1− θ)β

θ

]
− γ > 0

and regarding it as a quadratic function of
√
β, we can check that this

inequality has no solution whenever γ > 1
5
, a contradiction. �

(ii) Implementing the upper bound
Since P is incomplete, K ≥ 2. Moreover, there exist two data types, 1 and

2, and two exogenous variables, conveniently denoted x1 and x2, such that

1 ∈ C1\C2 and 2 ∈ C2\C1. Suppose λ1+λ2 = 1. Without loss of generality,

let γ ≥ 1
2
, such that max{γ, 1 − γ} = γ. Suppose that x1, x2 ∈ {0, 1,#}.

Construct the following distribution over triples (t, x1, x2):

Pr t x1 x2

β 1 1 1

β2 0 1 0

β2 0 0 1

1− γ − 2β2 0 # #

γ − β 1 0 0

Suppose that p is constant over the other x variables, such that they can

be ignored. Complete the exogenous components of p by letting δ1 = 1 and

δ0 = 0. Since there are no relevant x variables other than x1 and x2, we can

set without loss of generality C1 = {1} and C2 = {2}.
Let each type i play ai = xi with probability one whenever xi ∈ {0, 1}.5

5This involves some imprecision: The definition of ε-equilibrium requires the DM’s
strategy to be fully mixed. I chose to include no perturbation when xi = 0, 1 in order to
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In addition, suppose each type i plays a = 0 with probability 1 − ε when

xi = #, where ε and β are arbitrarily small. Let us calculate the terms in

∆1(x1 = 1):

p(t = 1 | a = 1, x1 = 1) =
β

β + λ1β
2 ≈ 1

p(t = 1 | a = 0, x1 = 1) = 0

such that ∆1(x1 = 1) ≈ 1. Let us now calculate the terms in ∆1(x1 = 0):

p(t = 1 | a = 1, x1 = 0) = 0

p(t = 1 | a = 0, x1 = 0) =
γ − β

γ − β + λ1β
2 ≈ 1

such that ∆1(x1 = 0) ≈ −1. It follows that ∆1(x1 = 1) > θ and ∆1(x1 =

0) < −θ, such that type 1 strictly prefers to play ai = xi for all xi ∈ {0, 1}.
This is consistent with the postulated strategy.

Finally, note that p(t = 1 | a, x1 = #) = 0 for both a = 0, 1, hence

∆1(x1 = #) = 0. It is therefore optimal for type 1 to play a = 0 when x1 =

#. Since he follows this prescription with probability 1 − ε, this completes
the confirmation that type 1’s behavior is consistent with ε-equilibrium. By

symmetry, the same calculation holds for type 2. We have thus constructed

an ε-equilibrium in which the DM commits an error with probability arbi-

trarily close to γ. Since θ can be arbitrarily close to 1, this completes the

proof. �

Proposition 5

Since P is incomplete, K ≥ 2. Moreover, there exist two data types, 1 and

2, and two exogenous variables, conveniently denoted x1 and x2, such that

1 ∈ C1 \ C2 and 2 ∈ C2 \ C1. Let λ1 = λ2 = 0.5. Construct a distribution

p over t, x1, x2, y given by the following table (suppose that p is constant

over the other x variables, such that they can be ignored), where β > 0 is

clarify the role of trembles when xi = #. This imprecision can be fixed by introducing
trembles on the order of ε2 when xi = 0, 1.
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arbitrarily small:
p(t, x1, x2, y) t x1 x2 y

1− γ − β 0 1 1 1

γ − β 1 0 0 1

β 0 1 0 0

β 1 0 1 0

Suppose data type i plays ai ≡ xi. Let us calculate ∆1(x1) for each x1.

First,

p(y = 1 | a = 1, x1 = 1) =
1− γ − β

1− γ − β + β · 0.5 ≈ 1

p(y = 1 | a = 0, x1 = 1) = 0

where the second equation holds because the combination of a = 0 and

x1 = 1 occurs only when x2 = 0, in which case y = 0 with certainty.

Second,

p(y = 1 | a = 0, x1 = 0) =
γ − β

γ − β + β · 0.5
p(y = 1 | a = 1, x1 = 0) = 0

where the second equation holds because the combination of a = 1 and

x1 = 0 occurs only when x2 = 1, in which case y = 0 with certainty.

Plugging these terms into the definition of ∆1(x1) yields ∆1(x1 = 1) ≈
1 and ∆1(x1 = 0) ≈ −1. The calculation for type 2 is identical due to

symmetry. Therefore, for every θ < 1, we can set β such that each data

type i will indeed prefer to play a ≡ xi. Furthermore, for both types i,

xi = 1− ti with probability arbitrarily close to one. Therefore, the DM plays

a = 1 − t with arbitrarily high probability, such that the expected welfare
loss is arbitrarily close to one. �

Appendix II: Consequential Actions
Throughout the paper, we focused on the extreme case in which the DM’s

action has no causal effect on the outcome. This facilitated the definition

of the DM’s equilibrium welfare loss due to poor controls, relative to the

rational-expectations benchmark. This appendix extends the analysis to
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situations in which actions do influence outcome. I build on the extended

notion of types presented in Section 5.

Define a variable z that takes values in [0, 1], This variable is a conse-

quence of (t, x), independently of a – just as y was in the baseline model.

The outcome y is purely caused by a and z, such that

Ep(y | a, z) = βa+ (1− β)z

where β ∈ (0, 1) quantifies the true causal effect of a on y.

This formulation implies that for every type i ∈ N , the perceived z-

outcome of actions is ∑
xDi\Ci

p(xDi\Ci | xCi)Ep(z | a, xDi)

The type’s estimated causal effect of switching from a = 0 to a = 1 on z

given x is

∆z
i (x) =

∑
xDi\Ci

p(xDi\Ci | xCi) [Ep(z | a = 1, xDi)− Ep(z | a = 0, xDi)]

Therefore, the type’s estimated causal effect of switching from a = 0 to a = 1

on y given x is β+(1−β)∆z
i (x). Since z ⊥ a | (t, x), the equilibrium analysis

of ∆z
i (x) and how it relates to the DM’s strategy is the same as the analysis

of ∆i(x) in the baseline model.

It follows that the only thing that needs adjustment is the definition of

the DM’s welfare loss. The optimal rational-expectations action maximizes

βa − θ · 1[a 6= t], because a has no causal effect on z, such that the only

effect of a on y is via the direct channel parameterized by β. Therefore, the

expected welfare loss given a joint distribution p is

γ · p(a = 0 | t = 1) · (θ + β) + (1− γ) · p(a = 1 | t = 0) · (θ − β) (18)

The DM chooses a = 0 at (t = 1, x) only if θ+β ≤ −(1−β)∆z
i (x). Likewise,

he chooses a = 1 at (t = 0, x) only if θ−β ≤ (1−β)∆z
i (x). Consequently, by

(18), the upper bounds on the DM’s equilibrium welfare loss are the same

as in Sections 3-4, multiplied by 1− β.
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Appendix III: Other Modeling Frameworks
The model of behavioral causal inference presented in this paper poses a

new question. However, it can be formulated by adapting existing modeling

frameworks. To make the comparison complete, I make use of the extended

formalism of Section 5.

Subjective state spaces

The perceived causal effect given by (6) can be interpreted traditionally in

terms of the Savage framework, where the state space itself is subjective.

According to this interpretation, XDi is type i’s subjective state space and

XCi is his set of signals. The novelty here is that while the state space is

subjective, the DM’s belief is a projection of the objective distribution p on

his subjective state space. Moreover, unlike the standard Savage model, the

stochastic mapping from the DM’s subjective states to outcomes is affected

by the DM’s strategy, hence it is an endogenous object. These deviations

from the Savage framework are so drastic that they justify avoiding the

Savage terminology in the paper’s formal exposition.

Analogy-based expectations

Jehiel’s (2005) concept of analogy-based expectations equilibrium captures

the idea that players’perception of other players’strategies is coarse. In the

present context, we can regard y as the action taken by a fictitious opponent

of the DM after observing the history (a, t, x1, ..., xn). In this context, xCi
is type i’s information set, whereas Di determines his “analogy partition”.

Two histories belong to the same partition cell if they share the same value of

xDi . My definition of equilibrium is consistent with Jehiel’s assumption that

type i believes that the fictitious player’s strategy is measurable with respect

to type i’s analogy partition, and that the equilibrium belief is consistent

with the average objective behavior of y conditional on each partition cell.6

Bayesian networks

The model can be cast in the Bayesian-network language of Spiegler (2016).

When a has no causal effect on y, the objective distribution p is consistent

6Aminor difference is that I use trembles to handle conditioning on null events, whereas
Jehiel (2005) relies on the sequential-equilibrium conceptual baggage.
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with the following DAG:

a ← t → y

↖ ↑ ↗
x

Using the DAG language, the distinction between data types in the present

model can be redefined in terms of subjective causal models. Specifically,

type i’s causal model is
xDi\Ci −→ y

↑ ↗ ↑
xCi −→ a

According to Spiegler (2016), the belief generated by this subjective model

obeys the Bayesian-network factorization formula

p(xCi)p(xDi\Ci | xCi)p(a | xCi)p(y | a, xCi , xDi)

The DM’s perceived causal effect of a on y given xCi is thus given by (6).

Equilibrium in the present model is consistent with the notion of personal

equilibrium in Spiegler (2016), with the modification that the DM’s subjec-

tive causal model itself is random.

Previous applications of the Bayesian-network framework contain prece-

dents for two of this paper’s ingredients. Eliaz et al. (2021a) characterize

the worst-case distortion of pairwise correlations generated by misspecified

Gaussian Bayesian networks. Spiegler (2022) illustrates how equilibrium ef-

fects can ameliorate the cost of a reverse-causality error.

Berk-Nash equilibrium

The Bayesian-network framework in Spiegler (2016) can be subsumed into

the more general concept of Berk-Nash equilibrium (Esponda and Pouzo

(2016)). According to this concept, the DM best-replies to a conditional be-

lief (over outcomes given actions and signals), which minimizes a weighted

version of Kullback-Leibler divergence with respect to the objective condi-

tional distribution. Proper adaptation of this concept to the present context

requires the weights to be given by the DM’s ex-ante equilibrium strategy.
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