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Abstract

When inferring the causal effect of one variable on another from

correlational data, a common practice by professional researchers and

lay decision makers alike is to control for some set of exogenous con-

founding variables. Choosing an inappropriate set of control variables

can lead to erroneous causal inferences. This paper presents a model

of lay decision makers who use long-run observational data to learn the

causal effect of their actions on a payoff-relevant outcome. Different

types of decision makers use different sets of control variables. I obtain

upper bounds on the equilibrium welfare loss due to wrong causal in-

ferences, for various families of data-generating processes. The bounds

depend on the structure of the type space. When types are “ordered”

in a certain sense, the equilibrium condition greatly reduces the cost

of wrong causal inference due to poor controls.

∗Financial support by ISF grant no. 320/21 is gratefully acknowledged.
†Tel Aviv University and University College London

1



1 Introduction

Learning the causal effect of one variable on another from observational data

is an important economic activity. Indeed, applied economists do it for a

living. However, even lay decision makers regularly perform this activity

in order to evaluate the consequences of their actions. They obtain data

about observed correlations among variables (via first-hand experience or

through the media) and try to extract lessons from the data concerning the

consequences of their actions. For example, which college degree will improve

their long-run economic prospects? Will wearing surgical masks on airplanes

their chances of catching a virus? Will drinking more coffee cause health

problems?

There are two main differences between causal inference from observa-

tional data as practiced by professional researchers and lay decision makers.

First, the researcher employs sophisticated inference methods that are sub-

jected to stringent scrutiny by other professionals. In contrast, lay decision

makers use intuitive, elementary methods, and they do not face any push-

back when they employ these methods inappropriately. The second difference

is that while the professional researcher is an outside observer, lay decision

makers interact with the economic system in question; the aggregate behav-

ior that results from their causal inferences can affect the very correlations

from which they draw their inferences. Thus, it is apt to refer to the kind of

causal inference that lay decision makers engage in as “behavioral”, in both

senses of the word.

This paper is an attempt to model “behavioral causal inference”. I study a

decision maker (DM) who faces a binary choice between two actions, denoted

0 and 1. The DM’s choice is based on his belief regarding the action’s causal

effect on a binary payoff-relevant outcome (which also takes the values 0 or 1).

Using an intuitive causal-inference method, the DM extracts this causal belief

from long-run correlational data about actions, outcomes and a collection of

exogenous variables. The data is generated by the behavior of other DMs

in similar situations. In equilibrium, the DMs’ behavior is consistent with

best-replying to their causal belief.
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The intuitive method of causal inference that the DM in my model em-

ploys is very simple: Measuring the observed correlation between actions and

outcomes, while controlling for some set of exogenous variables. This is a

basic and widespread procedure in scientific data analysis, but it is based on

a simple idea that lay people practice to some extent. For example, when an

agent decides whether to wear a surgical mask for protection against viral

infection, it is natural for him to look for infection statistics about people

in his own age group. Likewise, when a student deciding whether to choose

a STEM major tries to evaluate the labor-market outcomes of STEM and

non-STEM graduates, it is natural for him to focus on people who share his

highschool math background. In both cases, when the agent consults data to

estimate the consequences of various actions, he tries to focus on data points

that share his own characteristics – if he has access to such fine-grained

data. This type of controlling consists of conditioning on the realization of

some exogenous variables.

Another type of controlling involves adjustment. For example, in the

above-mentioned surgical-mask example, the agent may have access to data

about the prevalence of certain genes and their correlation with viral in-

fection. If he does not know his own relevant genetic background, he can

nevertheless adjust his beliefs according to the available data.

In general, suppose that long-run correlational data is given by some joint

probability distribution  over actions , outcomes , and a collection of

exogenous variables is 1   . The DM is able to control for the variables

indexed by  ⊆ {1 } and condition on a subset  ⊆  (such that he

only adjusts for the variables in  \). The DM’s estimated causal effect of
 on  is given by the formulaX



( | ) [( = 1 |  = 1 )− ( = 1 |  = 0 )] (1)

When the set  of control variables differs from the set that a normative

outside observer would deem appropriate, the DM’s causal inference can be

wrong: he may misread the causal meaning of observed correlations, and

consequently obtain a biased estimate of the causal effect of  on .
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Erroneous causal inference due to “bad (exogenous) controls” may take

various forms, which are easy to illustrate with directed acyclic graphs (DAGs),

following Pearl (2009). For instance, suppose that in reality,  has no causal

effect on  and that every observed correlation between these variables is due

to confounding by the exogenous variable . These objective causal relations

are represented by the DAG ← → . Given the observed joint distribu-

tion  over   , the proper measurement of the average causal effect of 

on  is given by the formulaX


()[( = 1 |  = 1 )− ( = 1 |  = 0 )]

This formula will correctly yield a zero causal effect. If, however, the DM

fails to control for , he will regard ( = 1 |  = 1) − ( = 1 |  = 0) as
the causal effect of  on  – in other words, he will mistake correlation for

causation – and potentially measure an erroneous, non-zero effect.

Bad controls can also involve excessive controlling for exogenous variables.

The following example is taken from Cinelli et al. (2022). The true causal

model is given by the DAG ← 1 → 2 ← 3 → . Thus, as in the previous

example, the objective causal effect of  on  is null. However, in this case

the quantity ( = 1 |  = 1)−( = 1 |  = 0) is the correct formula for the
objective (null) causal effect. In other words, there is no need to control for

any of the  variables. Suppose, however, that the DM adjusts for 2. Then,

his estimated causal effect will beX
2

(2)[( = 1 |  = 1 2)− ( = 1 |  = 0 2)]

In this case, the variable 2 is a bad control, and the DM’s estimate can end

up being non-null.

This paper poses the following question: What are the limits to the DM’s

errors of causal inference due to bad controls, when the data-generating

process  has to be consistent with equilibrium behavior – i.e., when the

DM’s choice of actions given his information maximizes his subjective ex-

pected payoff with respect to the belief he extracts from  using his causal-
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inference procedure?

I study this question with a simple model, in which a DM chooses an

action  ∈ {0 1} after a collection of exogenous variables  1   is real-
ized, where  ∈ {0 1} is the DM’s preference type. The DM’s vNM utility

function is (  ) =  −  · 1[ 6= ]. Thus, the DM will only choose  6= 

if he thinks that  has a causal effect on . In the baseline model, however,

I assume that the objective causal effect of  on  is null:  is determined

only by the exogenous variables according to some conditional probability

distribution (I relax this assumption in Section 5).

The DM’s control variables are given by a “data type” (drawn randomly,

independently of his preference type), which is defined by a distinct pair of

subsets (), where:  ⊆  ⊆ {1  };  represents the variables the

type conditions on, and  \  represents the variables he only adjusts for,

leading to an estimated causal effect of  on  (given ) as described by (1).

The formula is evaluated according to a joint distribution over all variable.

The DM observes the realization of , but he has no long-run data about  and

therefore does not use it for causal estimates. In equilibrium, the distribution

of  conditional on the exogenous variables is consistent with each DM type

best-replying to his causal belief. (Section 6 explains the relation between

this equilibrium concepts and earlier modeling frameworks by Jehiel (2005),

Spiegler (2016,2020) and Esponda and Pouzo (2016).)

The basic insight of this paper is that this equilibrium condition can re-

strict the magnitude of the DM’s welfare loss due to errors of causal inference.

These errors consist of misreading the causal component of observed corre-

lational patterns. When agents act on these errors, they change these very

patterns, and hence the causal effects they deduce from them.

The above pair of examples of “bad controls” provide an extreme illus-

tration of this insight. Suppose that  = 0 with certainty – i.e., there are no

preference shocks. In the first example,  is a direct cause of . For this rela-

tion to be non-null, it must be the case that some DM data types condition

their action on . However, this means that these types correctly measure

the null objective causal effect of  on . Since  = 0 for sure, these types will

play  = 0 with certainty. By definition, the same lack of variation of  with
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 extends to the types who cannot condition their action on . It follows

that no DM type will vary his action with , which destroys the confounding

effect of , and therefore any causal error due to failure to control for .

The same reasoning applies to the second example. If a DM data type

conditions on 1, his causal inference is sound and therefore his action is

constant (since there are no preference shocks); whereas if he does not con-

dition on 1, his behavior is independent of 1 by definition. Thus, no type

varies his behavior with 1, such that the link ← 1 that makes 2 a “bad

control” is effectively severed.

The main results in this paper – presented in Section 4 – explore the

generality of this observation. I examine various families of joint distributions

over  1   , and characterize the upper bound on the DM’s equilib-

rium welfare loss (relative to the rational-expectations strategy  ≡ ). It

turns out that a simple binary relation over the data types is critical for this

upper bound. Say that one type () dominates another ( 00) if  ⊇  0

(i.e., the former type’s set of control variables contains the latter type’s set of

conditioning variables). When  is constant, the upper bound is 0 when the

domination relation is complete and quasitransitive, and 1 when it is not.1

Thus, when data types are ordered in some sense, the equilibrium condition

eliminates all welfare loss due to causal errors. Conversely, when data types

are not ordered, the upper bound on the DM’s welfare loss is the same as

when we do not impose any restriction on the conditional action distribution.

I obtain partial characterization results when there is variation in  and

 =  for all data types. When the domination relation is complete and

the  is purely a function of , the upper bound on the DM’s equilibrium

welfare loss is Pr( = 1) · Pr( = 0). When the relation is incomplete, the

upper bound must be higher. When in addition there is no restriction on

the conditional outcome distribution, the upper bound is 1. Once again, the

structure of the domination relation over data types plays a key role in how

equilibrium forces constrain the cost of flawed causal inference.2

1A binary relation is quasitransitive if its asymmetric part is transitive (following Sen

(1969)).
2Spiegler (2022) presents an example of how equilibrium forces can restrict the cost of

committing a reverse-causality misperception.
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2 A Model

Let ,  and  be three binary variables that take values in {0 1}, where:
 is an action that a decision maker (DM) chooses;  is an outcome; and

 is the DM’s preference type. Let  = (1  ) be a collection of addi-

tional exogenous variables, which are realized jointly with , and prior to the

realization of  and . Let  = {0 1} denote the set of values that  can
take. Let  be the set of values that the variable  can take. For every

 ⊂ {1  }, denote  = ()∈ and  = ×∈.

I assume that  and  are the sole potential causes of  – i.e.,  has no

causal effect on . This assumption is made for expositional clarity; I will

relax it in Section 5.

The DM is a subjective expected utility maximizer, whose vNM utility

function is

(  ) =  −  · 1[ 6= ]

where  ∈ (0 1) is a constant. Thus, the DM has an intrinsic motive to match

his action to his preference type; he will choose  6=  only if he believes that

this increases the probability of the outcome  = 1. If the DM understood

that  has no causal effect on , he would always choose  = .

The DM’s data type is defined by a pair (), where ⊆  ⊆ {1  }.
The interpretation is that  defines the set of  variables that the type can

condition on, because he observes their realization before taking an action;

and  is the set of exogenous variables about which he has long-run data

(note that  is never among these variables). There are  data types. De-

note  = {1  }. Each data type  ∈  is associated with a distinct

pair (). We say that type  is  if  =  – i.e., the DM only

has long-run data about the variables he conditions on. Let  ∈ ∆() be

a prior distribution over data types. This distribution is independent of all

other variables. A strategy for type ( ) is a function  :  → ∆(). By

definition, this strategy is measurable with respect to .

Let  be a joint long-run probability distribution over    . Denote

 = ( = 1). The assumption that  has no causal effect on  means
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that  satisfies the conditional-independence property  ⊥  | ( ).3 The
distribution  can thus be factorized as follows:

(   ) = ( )( |  )( |  )

where the term ( |  ) represents the DM’s average behavior across data
types:

( |  ) =
X
∈

( |  )

This term is endogenous, whereas ( ) and ( |  ) are exogenous.
I assume that a DM of data type  forms the following belief regarding

the causal effect of  on  given his observation of :

̃( |  ()) =
X

\

(
| )( |  

) (2)

The ̃ notation indicates that this is a subjective belief, which may be incor-

rect. The  notation follows Pearl (2009). Its role here is merely to indicate

that (2) is a causal quantity, to be distinguished from purely probabilistic

conditioning. The DM’s attempt to evaluate the causal effect of  on  im-

pels him to control for every exogenous variable about which he has data.

For some of these variables (represented by ), he also learns their realiza-

tion prior to taking his action, and therefore he conditions on them. For

the other variables (represented by \), he has data about their long-run

correlation with ,  and , yet he does not learn their realization prior to

taking an action, and therefore he adjusts his belief by summing over them.

Definition 1 Data type ’s perceived causal effect of switching from  = 0

to  = 1 given  is

∆() = ̃( = 1 |  ( = 1))− ̃( = 1 |  ( = 0))

Plugging (2) into this definition, we obtain:

3Throughout the paper, I use the symbol ⊥ to denote statistical independence.

8



∆() =
X

\

(\ | )[( = 1 |  = 1 
)− ( = 1 |  = 0 

)]

(3)

This formula will serve us throughout this paper.

If the DM had long-run data about all exogenous variables (including ),

then he could control for all of them. Doing so, he would correctly infer

a null causal effect of  on . In contrast, the DM in this model may end

up believing that  has a non-zero causal effect on  because he fails to

control for all the exogenous variables. In this case, he misinterprets part

of the correlation between  and  as a causal effect, whereas in reality this

correlation is entirely due to confounding by  .

The preceding paragraph may give the impression that the only case of

“bad controls” that the model captures is insufficient controls. However, note

that while controlling for all  + 1 exogenous variables is always correct, it

is possible that a strict subset of these variables is a sufficient set of controls.

In this case, controlling for additional variables may induce errors, as in the

example by Cinelli et al. (2022) described in the Introduction. Thus, the

present model allows for both insufficient and excessive controlling. However,

the model does not accommodate variables that are caused by  or  as

possible controls – it only focuses on so-called “pre-treatment” variables.

Definition 2 Let   0. A strategy profile  = (1  ) is an -equilibrium

if for every  = 1   and every   0, (0 |  )   only if

0 ∈ argmax


X
̃( |  ())(  )

An equilibrium is a limit of a sequence of -equilibria for → 0.

The structure of  means that in equilibrium, type  will play  6=  with

positive probability at  only if

|∆()| ≥ 
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Since  has no causal effect on , playing  6=  yields a welfare loss.

Definition 3 (Expected welfare loss) Given a strategy profile , the DM’s

expected welfare loss is


X


( )
X
∈

( = 1−  |  )

Our task in the next sections will be to derive upper bounds on this

quantity when  is required to be an equilibrium. Without this equilibrium

condition, the upper bound on the DM’s expected welfare loss is 1. To see

why, suppose that  = 0 with certainty, and that  ∈ {0 1}. Assume  = 

with probability one for every , and consider the strategy  that prescribes

 =  with probability one. Then, the expected welfare loss is

 · [( = 1) · 1 + ( = 0) · 0]

Then, if we set  and ( = 1) to be arbitrarily close to one, the expected

welfare loss is also arbitrarily close to one. However, the strategy  is incon-

sistent with our equilibrium definition. For the DM to vary  with , he must

be able to condition on  – i.e.,  6= ∅. But this means the DM correctly

controls for  when estimating the causal effect of  on , which means that

he correctly estimates it to be zero, contradicting the assumption that he

plays  = 1 for some realization of . It follows that the requirement that 

is an equilibrium strategy can have bite.

Comment. The assumption that  ⊆  means that if a DM conditions on

a variable, he must have long-run data about it. In principle, one can easily

imagine situations in which agents know the realization of a variable without

having data about the long-run behavior of this variable. For instance, the

DM may know his height but lack access the statistics about how height is

correlated with the outcome of interest. In the absence of such data, the

DM cannot make use of his height information, and therefore, we might as

well assume that he lacks it. This is the justification for the assumption that
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 ⊆ . Note that the DM knows the realization of , and he makes use of

this information to calculate his utility, but this does not require access to

any long-run statistical data.

3 Examples

In this section I present three examples that illustrate the upper-bound prob-

lem for various specifications of the model. Throughout the examples, the

set of types is simple, such that a DM’s data type  can be identified with

. In each example, I hold  = ( = 1) fixed and derive upper bounds on

the DM’s expected welfare loss, allowing (  | ) to vary.

Example 3.1

Let  = 0 and  = 1. This means that there is a unique data type,  = ∅.
The DM’s estimated causal effect of  on  is

∆ = ( = 1 |  = 1)− ( = 1 |  = 0)

Without loss of generality, ∆ ≥ 0. The DM’s subjective expected payoff from
 given  is

( = 1 | )−  · 1[ 6= ]

It follows that in equilibrium, ( = 1 |  = 1) = 1. Denote ( = 1 |  =
0) = . In order for the DM to commit an error with positive probability,

it must be that   0. For this to be consistent with the DM’s subjective

optimization, it must be the case that  ≤ ∆. Therefore, the DM’s expected

welfare loss is at most

(1− ) ·  · [( = 1 |  = 1)− ( = 1 |  = 0)] (4)

Denote ( = 1 | ) =  . Observe that
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( = 1 |  = 1) =  · 1 · 1 + (1− ) ·  · 0
 · 1 + (1− ) · 

( = 1 |  = 0) =  · 0 · 1 + (1− ) · (1− ) · 0
 · 0 + (1− ) · (1− )

= 0

It follows that to find an upper bound on (4), we should select 0 = 0 and

1 = 1. The expression then becomes

(1− ) ·  · 

 + (1− ) · 

This expression is increasing in , and therefore bounded from above by

(1− ).

To see how this upper bound can be approximated arbitrarily well, sup-

pose that indeed,  =  with probability one. Let  = , where  is arbitrar-

ily close to 1 from above. The DM plays the strategy ( = 1 |  = 1) = 1
and ( = 1 |  = 0) = (1− )( − ). It can be checked that given this

, ∆ = , hence  is an equilibrium. As  → 1, the expected welfare loss

approaches the upper bound (1− ).

This example demonstrates how the equilibrium assumption can “pro-

tect” the DM against causal errors, by limiting his welfare loss below (1−).
The intuition is as follows. The DM mistakes the correlation between  and

 for a causal effect. This correlation is large when  varies strongly with ; it

hits the maximal level when  always coincides with . However, that extreme

case is precisely when the DM commits no error. At the other extreme, if the

DM almost always plays  = 1 because his estimated causal effect of  on  is

above , the frequency of the DM’s error is maximal. However, since in this

case  does not vary with , the estimated causal effect is negligible, hence

 must be close to zero for this to be consistent with equilibrium behavior.

In this case, too, the average welfare loss vanishes. More generally, a larger

estimated causal effect implies a lower equilibrium frequency of making an

error. This is why equilibrium behavior limits the DM’s expected welfare

loss due to wrong causal inference. ¤
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In the next two examples, I assume  = 0 – that is, the preference type

is constant,  = 0, such that the DM’s type is pinned down by his data type.

In this case,  ⊥  | , hence the rational course of action is to play always
 = 0.

Example 3.2

Let  ≥ 1 and  = 2, where 1 ⊂ 2. I will establish that in this case,

both types must play  = 0 with probability one in equilibrium. To see why,

recall that by definition, type  does not condition his action on any variable

outside  – that is, ( | ) ≡ ( | ). Since 1 ⊂ 2, this means that

( |  2) ≡ ( |  ) – that is,  ⊥  | 2. As a result,

̃2( = 1 | 2 ( = 1))− ̃2( = 1 | 2 ( = 0)) = 0

such that in equilibrium, 2( = 1 | 2) = 0 for every 2. This means that
( |  1) ≡ ( |  ) – in other words, the variables in 2\1 do not
confound the joint distribution of  and . As a result,

̃1( = 1 | 1 ( = 1))− ̃2( = 1 | 1 ( = 1)) = 0

such that in equilibrium, 1( = 1 | 1) = 0 for every 1 .
The intuition behind this result is as follows. Type 1 is vulnerable to

interpreting correlation between  and  as a causal effect, because he does

not control for variables in 2\1. However, this problem does not arise

in equilibrium because  does  vary in response to fluctuations in 2\1
– type 1 never conditions on 2\1 by definition, whereas type 2 correctly

controls for it and thus never deviates from the correct action  = 0. ¤

Example 3.3

Let  = 2. The two exogenous variables 1 and 2 take values in {0 1}, and
their joint distribution is as follows:

(1 = 1) =
1

2
(2 = 1 | 1) =  · 1
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for every , where  ∈ (0 1). That is, the marginal distribution of each
variable is uniform, and  measures the extent to which they are (positively)

correlated. Assume  = 12 with probability one.

Let  = 2, where  = {}. That is, each type conditions his action on
one of these variables. Assume 1 = 2 =

1
2
. I will establish that in this case,

the equilibrium probability of  = 1 can be arbitrarily close to one.

Suppose that each type  = 1 2 always plays  = . Let us calculate type

1’s subjective estimate of the causal effect of his action given his information.

First, observe that since  = 12 independently of ,

( = 1 |  1 = 1) = (2 = 1 |  1 = 1)
( = 1 |  1 = 0) = 0

for every . Therefore, we only need to calculate the following quantities,

which also make use of the DM’s postulated strategy:

(2 = 1 |  = 1 1 = 1) = 

+ 1
2
(1− )

(2 = 1 |  = 0 1 = 1) = 0

Based on these calculations, we obtain

̃1( = 1 | 1 = 1 ( = 1))− ̃1( = 1 | 1 = 1 ( = 0)) = 

+ 1
2
(1− )

In addition, we established that

̃1( = 1 | 1 = 0 ( = 1))− ̃1( = 1 | 1 = 0 ( = 0)) = 0

Therefore, for every   1, we can find  sufficiently close to one such that

the postulated strategy is consistent with equilibrium. By symmetry, the

same holds for type 2. We have thus established that the upper bound on

the equilibrium error is the same as without the equilibrium restriction.

Unlike Example 3.1, the two types in this example are not hierarchi-

cally ordered in terms of their sophistication. Type 1 fails to control for 2,
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whereas type 2 fails to control for 1. Therefore, each type  is vulnerable to

interpreting the residual correlation between  and  after controlling for 

as a causal effect. This misperception can be sustained in equilibrium. As a

result, the equilibrium condition per se does not limit the maximal welfare

loss that the DM may incur as a result of his false causal inferences. ¤

4 Analysis

In this section I derive upper bounds on the welfare loss that is consistent

with equilibrium behavior, for various specifications of the space of possible

data types and the space of possible joint distributions over   .

The characterization results will make use of the following binary relation

 over data types.

Definition 4 For data types   ∈  ,  if  ⊇ .

The meaning of  is that the set of variables that data type  controls

for (via conditioning or adjustment) is a weak superset of the set of variables

that type  conditions on. Note that by our definition of types,  is reflexive,

since  ⊇  for every  ∈  . Let  ∗ be the asymmetric (strict) part of 

– i.e.,  ∗ if  and  /. Following Sen (1969),  is quasitransitive if  ∗

is transitive.

Lemma 1 Suppose a binary relation  over  is complete and quasitransi-

tive. Then,  can be partitioned into  classes, 1  , as follows: For

every  = 1  ,

 = { ∈ ∪ |  / ∗ for all  ∈ ∪}

Moreover, for every  ∈ ,  for all  ∈ ∪≥.

Proof. By definition,  ∗ does not contain cycles. Hence, the set of data

types  ∈  such that  /
∗
 for all  ∈  (i.e., the set of  ∗-undominated
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data types) is non-empty. Define this set by 1. Since  is complete,  for

every  ∈ 1 and every  ∈  . The other cells in the partition are defined

inductively: After 1   are removed from  , let +1 be the set of 
∗-

undominated types in the remaining set. Since none of the sets  is empty,

the procedure terminates after at most  steps.

The lemma confirms that when  is complete and quasitransitive, it

partitions  into layers, such that the first (top) layer consists of all  ∗-

undominated, the second layer consists of all  ∗-undominated element out-

side the first layer, and so forth.

When all data types are simple, the structure of  is simplified: 

means  ⊇ , hence  is automatically transitive. The relevant distinction

is thus between the case of complete or incomplete  . Moreover, since I

assumed that all data types are distinct, it follows that for every pair of

distinct types  ,  implies  ∗. Therefore, the requirement that  is

complete is reduced to the requirement that  ∗ is a linear ordering.

4.1 The Case of  = 0

In this sub-section, I derive upper bounds on the DM’s equilibrium welfare

loss when  = 0 with probability one (i.e., when playing  = 1 always inflicts

a cost  on the DM). In this case, any correlation between  and  is due to

mutual correlation with . Since  does not vary, the DM’s type coincides

with his data type.

Proposition 1 Let  = 0. Suppose that  is complete and quasitransitive.

Then, the DM’s equilibrium expected welfare loss is zero.

Proof. I will show that  = 0 with probability one in any equilibrium.

The proof is by induction with respect to the partition defined by Lemma

1. Consider an arbitrary type  in the top layer 1. This type satisfies

 ⊇  for all  ∈  . Hence, there is no  variable outside  that 

DM type conditions his action on. This means that  ⊥  | 
– i.e.,
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( = 1 |  
) = ( = 1 | 

). Therefore, ∆() = 0. It follows that in

equilibrium, type  plays  = 0 for all .

Suppose the claim holds for all types in the top  layers in the partition,

and now consider an arbitrary type  in the (+ 1)-th layer. By definition,

 ⊇  for every type  outside the top  layers of the partition. As to

types in the top  layers, by the inductive step these types play a constant

action  = 0 for all  in any equilibrium – i.e., there is no variation in their

action. It follows that if  is consistent with equilibrium, then  ⊥  | 
.

Formula (3) then implies ∆() = 0. It follows that in equilibrium, type 

plays  = 0 for all . This completes the inductive proof.

Thus, when  = 0 and the binary relation  is complete and quasitransi-

tive – i.e., the data types are ordered in a certain sense – the equilibrium

requirement fully “protects” the DM from choice errors due to flawed causal

inference. It does so by shutting down the channels through which the choice

behavior of some types could confound the relation between other types’ ac-

tions and . Types in the top layer of the  -based partition effectively control

for all sources of correlation between  and . As a result, their subjective

best-replying implies that they do not generate any variation in choice be-

havior. This means that types in the next layer effectively control for all

relevant  variables. This would not be the case if we did not impose the

equilibrium condition on the behavior of top-layer types. This equilibrium

effect spreads through all layers of the partition.

When  violates completeness or quasitransitivity, the picture is diamet-

rically opposed.

Proposition 2 Let  = 0. Suppose that  violates completeness or qua-

sitransitivity. Then, for any   0, there exist ,  and (( )) such that

an expected welfare loss above 1−  can be sustained in equilibrium.

Proof. Suppose first that  is incomplete. Then, there exist two types,

denoted conveniently 1 and 2, such that 1 \2 and 2 \1 are non-empty.

Select two variables in 1 \ 2 and 2 \ 1, and denote them 1 and 2 as
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well, respectively. Suppose that 1 2  0 and 1 + 2 = 1. Construct  as

follows. First, let 1 2 ∈ {0 1}, and

(1 = 1 2 = 1) = 1− 

(1 = 0 2 = 1) = (1 = 1 2 = 0) =


2

where   0 is arbitrarily small. Second, let ( = 1 | 1 2) = 12. Thus,

1 and 2 are the only  variables that determine , and so we can afford to

ignore all other  variables.

Given this specification of  and ( ), let us now construct an equilib-

rium in which for each type  = 1 2,  =  with probability one. Without

loss of generality, consider type 1’s reasoning. This type’s perceived causal

effect of  on  given 1 is

∆1(1) = ( = 1 |  = 1 1)− ( = 1 |  = 0 1)

because all other variables are either not in 1 or irrelevant for the deter-

mination of  and therefore can be ignored. Note that since  = 12 with

probability one,

( = 1 |  1 = 1) = (2 = 1 |  1 = 1)
( = 1 |  1 = 0) = 0

for every . Neither of these two formulas ever conditions on null events,

because all four combinations of ( 1) occur with positive probability. (Note

that the combination  = 1 and 1 = 0 arises when 2 = 1, because of the

DM’s strategy.) By our construction of (1 2) and the DM’s strategy,

(2 = 1 |  = 1 1 = 1) = 1− 

1− + 
2
· 1

(2 = 1 |  = 0 1 = 1) = 0

It follows that ∆1(1 = 0) = 0, while ∆1(1 = 1) → 1 as  → 0. Therefore,

type 1’s postulated strategy can be consistent with equilibrium for values of
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 that are arbitrarily close to one.

Now suppose that  is complete but not quasitransitive. This means

that  ∗ must have a cycle of length 3 – that is, we can find three types,

denoted 1 2 3, such that 1 ∗2, 2 ∗3 and 3 ∗1. By the definition of  ∗,

this means that for each of the three types  = 1 2 3, there is a distinct

variable in {1 }, conveniently denoted  as well, such that  ∈  \

for all other  ∈ {1 2 3}. Suppose 1 2 3  0 and 1 + 2 + 3 = 1. Let

1 2 3 ∈ {0 1}. Construct  as follows. First,

(1 = 1 2 = 1 3 = 1) = 1− 

and

( = 0  =  = 1) =


3

for every  = 1 2 3 and   ∈ {1 2 3} \ {}, where   0 is arbitrarily

small. Second, let ( = 1 | 1 2 3) = 123. Thus, 1 2 3 are the

only  variables that determine , and so we can afford to ignore all other

 variables. Suppose each type  = 1 2 3 plays  =  with probability

one. Showing that this strategy is an equilibrium proceeds essentially along

the same lines as in the case of an incomplete  – namely, we show that

∆( = 1) → 1 as  → 0 and that ∆( = 0) = 0. Since the calculation is

essentially the same (it is based on deriving expressions for (23 = 1 |  1)
for all  1), I omit it for brevity.

Thus, the upper bound on the DM’s equilibrium welfare loss due to wrong

causal inferences critically depends on whether the binary relation  is com-

plete and quasitransitive. When it is, it is impossible that the equilibrium

behavior of some data types will generate a variation that will produce con-

founding patterns, which other data types will misinterpret as causal. When

it is not, the equilibrium behavior of different types can create such confound-

ing patterns that mutually sustain their causal-inference errors. In that case,

the equilibrium assumption does not constrain the maximal possible welfare

loss due to these errors.
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For an economic example that illustrates the relevance of the findings of

this sub-section, suppose that the DM is a company executive contemplating

a business decision. Suppose further that  has a technological dimension

(1) and a financial dimension (2). The executive may have expertise in

either of these two dimensions. This expertise means that the executive has

data about the variable and how it correlates with business decisions and

business outcomes.

In this setting, suppose that there are two types of executives: sophisti-

cates, who possess full data about   ; and simpletons, who posses data

about   but lack expertise about any of the  variables. Then, Proposition

1 implies that the executive will commit no error in equilibrium. Alterna-

tively, suppose that the two types differ in their area of expertise: one type

only has technological expertise, while the other type only has financial ex-

pertise. Then, by Proposition 2, we can construct a joint distribution over

  such that each executive type will sometimes take the wrong business

decision in equilibrium.

4.2 The Case of   0 with Simple Data Types

In this sub-section, I obtain partial results for families of distributions for

which   0 – i.e., when there is variation in the DM’s preference type.

Denote  = ( = 1 | ). Without loss of generality, assume 1 ≥ 0.

Throughout this subsection, I restrict attention to simple data types, as

defined in Section 2.

I begin by imposing the domain restriction that ( |  ) ≡ ( | )
– i.e.,  ⊥  | . This fits situations in which the DM’s preference type
is a sufficient statistic for determining the outcome, and the  variables are

only potential correlates of this statistic. For instance, whether a student

regards studying as a costly or pleasurable activity is the best predictor of

her school performance. This attitude (which is not observable to others) may

be correlated with observable socioeconomic indicators, which nevertheless

contribute no additional predictive power.
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Proposition 3 Suppose that all data type are simple and that  is complete.

If  ⊥  | , then the DM’s expected welfare loss in equilibrium is at most

(1− ).

Proof. The proof proceeds stepwise. Recall that since  is complete,  ∗ is

a linear ordering. For convenience, enumerate the types according to  ∗ –

i.e., 1 ∗2 ∗ · · · ∗. For every  and every  ⊆ {1 }, denote () =
( = 1 | ) and () = ( = 1 | ).

Step 1: Deriving an expression for ∆()

Proof : Since  ⊥ ( ) | , we can write

( |  ) =
X


( |  

)( |   ) =

X


( |  )( | )

Plugging this in (3), we obtain

∆() = [( = 1 |  = 1 )− ( = 1 |  = 0 )][1 − 0] (5)

Step 2: For every , ∆1() ≥ 0 and 1( = 1 |  = 1 1) = 1.
Proof : For every , the terms ( = 1 |  ) in (5) can be written as

()( |  = 1 )
()( |  = 1 ) + (1− ())( |  = 0 )

(6)

We will now focus on the term ( |  = 1 1). Note that

( |  1) =
X
−1

(−1 |  1)( |  1  −1 ) (7)

By definition, 1 ⊃  for every   1. This means that no data type 

conditions his actions on −1 . Therefore, (7) is equal to

X
=1

( |  )

By the DM’s preferences, ( = 1 |  = 1 ) ≥ ( = 1 |  = 0 )
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in any equilibrium, for every  and every  It follows that ( = 1 |  =
1 1) ≥ ( = 1 |  = 0 1) for every 1 . A simple calculation then

confirms that the expression (6) is weakly increasing in  for  = 1. Since

1 − 0 ≥ 0, it follows that ∆1() ≥ 0.

Step 3: Extending the property of Step 2 to all data types

Proof : The proof is by induction on  ∗. Suppose that for every type  =

1 , ∆() ≥ 0 and ( = 1 |  = 1 ) = 1. Now consider type

 = + 1. We can write

( |  ) =
X
−

(− |  )
"X
≤

( |  ) +
X


( |  )
#

By the inductive step, ( = 1 |  = 1 ) = 1 for every  ≤ . By

definition,  ⊆  for every  ≥ +1, hence ( |  ) is constant in −.
We already observed that ( = 1 |  = 1 ) ≥ ( = 1 |  = 0 ) for
every  . It follows that ( = 1 |  = 1 ) ≥ ( = 1 |  = 0 ). As
in the proof of Step 2, applying this inequality to (6) implies that ∆() ≥ 0
and ( = 1 |  = 1 ) = 1. This completes the inductive proof.

Step 4: An upper bound on the expected equilibrium welfare loss given 

Proof : We have established that in any equilibrium, all data types play  = 1

with probability one when  = 1. Therefore, they only commit an error if

they play  = 1 with positive probability when  = 0. Fix the realization of

. Let () be the lowest-indexed type  for which ( = 1 |  = 0 )  0.
Then, the DM’s expected welfare loss given  is

(1− ())

X
=()

( = 1 |  = 0 )

In order for type () to play  = 1 given  and  = 0, it must be the case

that  ≤ ∆()(). By Step 3, ( = 1 |  = 1 ) = 1 for all , hence

( = 1 |  = 1 ()) = 1. Plugging this identity into (5)-(6) and recalling
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that 0 ≤ 1 − 0 ≤ 1, we obtain

∆()() ≤
(())

(()) + (1− (()))( = 1 |  = 0 ())

Since  ⊇  for every  for which ( = 1 |  = 0 )  0, it follows
that none of these types  condition on −(). Therefore,

( = 1 |  = 0 ()) =
X

=()

( = 1 |  = 0 )

Denote this quantity by . This means that the DM’s expected welfare loss

given  is at most

(())

(()) + (1− (()))
· (1− ()) · 

This expression attains its maximal value when  = 1. Therefore, the DM’s

expected welfare loss given  is bounded from above by

(1− ())(()) = (1− ()) ·
X
0

(0 | 0() = ())(
0)

Step 5: Deriving the upper bound on the DM’s ex-ante expected equilibrium

welfare loss

Proof : By Step 4, the ex-ante welfare loss is at mostX


()(1− ()) ·
X
0

(0 )(0) (8)

where (·) is a system of convex combinations, (0 ) = (0 | 0() =
()). Expression (8) is a concave function of (()). By Jensen’s inequal-

ity, it attains a maximum when () =  for all , such that the upper bound

on the DM’s expected equilibrium welfare loss is (1− ).

Thus, when the set of types is simple and  is only determined by , the

DM’s expected equilibrium welfare loss is at most (1 − ). Example 3.1
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established the tightness of this bound. This result also means that across

all distributions that satisfy  ⊥ ( ) | , the expected welfare loss is at
most 1

4
– compared with the non-equilibrium upper bound of 1. This is yet

another demonstration of how the equilibrium condition restricts the cost of

faulty causal inferences. As  → 0, this loss converges to zero.

When completeness of  is relaxed, finding the upper bound on the DM’s

expected welfare loss when  ⊥  |  is an open problem. However, the
following result establishes that this bound must exceed (1 − ) whenever

 6= 1
2
. Without loss of generality, let   1

2
.

Proposition 4 For every , there exist , a distribution  over simple data

types and a distribution ((  | )) satisfying  ⊥  | , for which there is
an equilibrium in which the DM’s expected welfare loss is arbitrarily close to
1
2

p
(1− ).

Proof. Let  be arbitrarily large. Let  = , and  = {} for every
 = 1 . Let  =

1

for every .

Suppose  ∈ {0 1} for every  = 1 . For every subset  ⊂
{1 }, define () as follows:  = 1 if and only if  ∈  . Fix

 ∈ {1  − 1}. Define (( | )) and (( | )) as follows:

( =  | ) ≡ 1
( = (1  1) |  = 1) = 1

(() |  = 0) =
1− ¡





¢ for every  such that | | = 

Suppose each data type  plays  = 1 if and only if  = 1. Let us

calculate ∆() for every  and . Without loss of generality, consider type

1, for whom 1 = {1}. Since  =  with certainty, it suffices to calculate

( = 1 | 1 ). First,

( = 1 | 1 = 1  = 1) = 

 + (

)2(1− )

Let us elaborate on this expression. Consider the numerator. The probability

of  = 1 is , and in this case  = 1 for all , and all data types play  = 1.
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As to the second term in the denominator, the probability that  = 1 and

1 = 1 is (1− ); and the fraction of data types who play  = 1 given

any realization of  = 0 is exactly .

Next, ( = 1 |  = 1  = 0) = 0 because given the DM’s assumed

strategy, the realization  = 0 occurs with positive probability at 1 = 1

only when  = 0 (in this case, it was one of the other data types who play

 = 0). It follows that

∆1(1 = 1) =


 + (

)2(1− )

Finally, ( = 1 | 1 = 0 ) = 0 for all  because by construction, the

realization 1 = 0 occurs with positive probability only when  = 0. It

follows that ∆1(1 = 0) = 0.

Therefore, if   ∆1(1 = 1), the DM’s strategy is consistent with equilib-

rium. In this case, the expected welfare loss of data type 1 can be arbitrarily

close to



(1− )



 + (

)2(1− )

(9)

because this type plays  6=  when  = 0 and 1 = 1. Since this same

calculation applies to all data types, the DM’s expected welfare loss is given

by (9). The value of  that maximizes this expression is
p
(1− ).

We can find values of  that get arbitrarily close to this value. Plugging

it into (9), we obtain 1
2

p
(1− ).

The final result in this sub-section lifts all restrictions on ((  | ))
and  and shows that in this case, the gap between equilibrium and non-

equilibrium upper bounds on the DM’s welfare loss disappears.

Proposition 5 Suppose that all data types are simple and that  is incom-

plete. Then, for every , there exist ,  and ((  | )) for which there is
an equilibrium in which the DM’s expected welfare loss is arbitrarily close to

1.

Proof. Since  is incomplete, there are two data types, denoted conveniently

1 and 2, and two variable indices, also denoted 1 and 2, such that 1 ∈ 1 \2
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and 2 ∈ 2 \ 1. Let 1 = 2 = 05. Construct a distribution  over

 1 2  given by the following table (suppose that  is constant over the

other variables, such that they can be ignored), where   0 is arbitrarily

small:
( 1 2 )  1 2 

1−  −  0 1 1 1

 −  1 0 0 1

 0 1 0 0

 1 0 1 0

Suppose data type  plays  ≡ . Let us calculate ∆1(1) for each 1.

First,

( = 1 |  = 1 1 = 1) = 1−  − 

1−  − +  · 05 ≈ 1
( = 1 |  = 0 1 = 1) = 0

where the second equation holds because the combination of  = 0 and 1 = 1

occurs only when 2 = 0, in which case  = 0 with certainty.

Second,

( = 1 |  = 0 1 = 0) =  − 

 − +  · 05
( = 1 |  = 1 1 = 0) = 0

where the second equation holds because the combination of  = 1 and 1 = 0

occurs only when 2 = 1, in which case  = 0 with certainty.

Plugging these terms into the definition of ∆1(1) yields ∆1(1 = 1) ≈
1 and ∆1(1 = 0) ≈ −1. The calculation for type 2 is identical due to
symmetry. Therefore, for every   1, we can set  such that each data

type  will indeed prefer to play  ≡ . Furthermore, for both types ,

 = 1−  with probability arbitrarily close to one. Therefore, the DM plays

 = 1 −  with arbitrarily high probability, such that the expected welfare

loss is arbitrarily close to one.

The partial results in this section leave a few open problems. First, is the
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upper bound obtained in Proposition 4 tight when  is purely a function of

? Second, does the upper bound obtained for complete  in Proposition 3

extend to arbitrary distributions ? Finally, do the results extend to general

data types?

5 Consequential Actions

So far, we focused on the extreme case in which the DM’s action has a null

objective causal effect on the outcome. This facilitated the definition of the

DM’s equilibrium welfare loss due to poor controls. In this section I extend

the analysis to situations in which actions do influence outcome.

Define a variable  that takes values in 0 and 1, such that the objective

causal model behind the joint distribution over      is given by the

DAG
( ) → 

↓ ↓
 → 

That is,  and  are exogenous, as before. The action  is a consequence

of ( ), via the DM types’ strategies. The variable  is also a consequence

of ( ), independently of  (just as  was in the baseline model). The

outcome  is purely caused by  and , according to the following conditional

probability:

( = 1 | () ) = + (1− )

where  ∈ (0 1).
This formulation implies that for every type , the perceived outcome of

actions is given by

̃( = 1 |  ()) = + (1− )̃( = 1 |  ())

where the last term is defined just as in the baseline model:

̃( = 1 |  ()) =
X


(
| )( = 1 |  

)
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The type’s estimated causal effect of  on  given  is

∆
 () = ̃( = 1 |  ( = 1))− ̃( = 1 |  ( = 0))

Since  ⊥  | ( ), the equilibrium analysis of ∆
 () and how it relates to

the DM’s strategy is the same as the analysis of ∆() in the baseline model.

It follows that the only thing that needs adjustment is the definition of

the DM’s welfare loss. The optimal rational-expectations action maximizes

−  · 1[ 6= ]

because  has no causal effect on , such that the only effect of  on  is via

the direct channel parameterized by . Therefore, the expected welfare loss

given a joint distribution  is

 · ( = 0 |  = 1) · (+ ) + (1− ) · ( = 1 |  = 0) · (− )

note that in equilibrium, the DM chooses  = 0 at  = 1 and  only if

 +   −(1 − )∆
 (). Likewise, the DM chooses  = 1 at  = 0 and 

only if −   (1− )∆
 (). Consequently, the upper bounds on the DM’s

equilibrium welfare loss are the same as in the previous section, multiplied

by 1− .

An example: Partying during a pandemic

Although the paper emphasized upper bounds on the equilibrium costs of

using bad controls for causal inference, in economic applications we wish to

restrict the objective process so that it can capture an underlying economic

reality. I now present a simple example of such an application.

Suppose that  = 1 means that the DM chooses to socially distance

himself during a pandemic – specifically, avoiding parties. The outcome

 = 1 represents good health. Let  represent the DM’s age ( = 1 indicates

an old DM). Let  represent the DM’s intrinsic taste for partying –  = 1

means that the DM prefers not to go to parties. Let   1
2
.

The objective distribution  satisfies: ( = 1) = 1
2
; ( =  | ) =  for
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all , where  ∈ (1
2
 1); and ( = 1 |  ) = 1

2
(+ 1− ). This distribution

is consistent with the DAG
 ← 

↓ . ↓
 → 

That is,  is only caused by  and . When an old DM goes to parties, his

health outcome is bad with certainty; when a young DM avoids parties, his

health outcome is good with certainty; in all other cases, the DM’s health

outcome is equally like to be good or bad.

Data type 1 controls for . This type correctly estimates the causal effect

of switching from  = 0 to  = 1 on  to be 1
2
. Since   1

2
, this DM data

type will rationally play  = 1, independently of  and .

Data type 2 does not control for  (recall that even if it is obviously nat-

ural to assume that the DM knows his age group, the DM may lack statistics

about the age dependence of the correlation between  and , and therefore

cannot use his knowledge of his age). This DM chooses  to maximize

( = 1 | )−  · 1[ 6= ] =
1

2
+
1

2
− 1

2
( = 1 | )−  · 1[ 6= ]

Let us analyze the equilibrium in this example. As we saw, data type 1’s

strategy is 1( = 1 | ) = 1 for all  . Denote 2( = 1 | ) =  (recall

that type 2 does not condition his action on ). Then,

( = 1 |  = 1) = 1 + 2[1 + (1− )0]

21 + 2[1 + 0]

( = 1 |  = 0) = 1− 1 − (1− )0

2− 1 − 0

Let us first guess

( = 1 |  = 1)− ( = 1 |  = 0)  1

2
− 

Then,  = 1 is optimal for data type 2 regardless of . In this case, we need to

consider perturbed strategies to ensure that ( = 1 |  = 0) is well-defined.
Since 0 and 1 are arbitrarily close to 1, we obtain ( = 1 |  = 1) ≈ 1

2
,
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whereas we can set the perturbations such that ( = 1 |  = 0) can take any
value in (1 −  ). It follows that it is always possible to sustain the guess

in equilibrium, such that the DM will commit no error.

Let us now guess

( = 1 |  = 1)− ( = 1 |  = 0)  1

2
− 

Then, data type 2 will play  ≡  in equilibrium. Plugging this into the

expressions for ( = 1 | ), we obtain

( = 1 |  = 1)− ( = 1 |  = 0) = 1 + 2

21 + 2
− (1− )

It follows that if

 
1

2
− 2 − 1
1 + 1

the guess is consistent. In this case, there is an equilibrium in which type 2

follows his taste.

What sustains this equilibrium is the positive correlation between age

and preferences. Young DMs like going to parties more than old DMs, and

since the DM chooses according to his intrinsic taste with some probability

(2), there is positive correlation between attending parties and young age.

In turn, this soften the negative correlation between  and , to an extent

that makes it optimal for type 2 DMs to follow their taste. The welfare loss

in this equilibrium is

1

2
· 2 · (1

2
− ) 

(2 − 1)(1− 1)

2(1 + 1)

Note that the welfare loss decreases with the fraction of type 1. There

are two forces behind this observation. First, lower 1 obviously means that

there are more DMs in the population who are prone to error. Second, type

1 DMs do not vary their behavior with  (and hence with ), thus curbing

the overall positive correlation between  and  that leads type 2 DMs to

underestimate the causal effect of  on .

There is potentially a third equilibrium in which 1 = 1 and 0 ∈ (0 1),
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such that

( = 1 |  = 1)− ( = 1 |  = 0) = 1

2
− 

For brevity, I omit the full characterization of this equilibrium.

6 Relation to Other Solution Concepts

The model of behavioral causal inference presented in this paper poses a new

question. However, it can be formulated in terms of adaptations of existing

frameworks of equilibrium modeling with non-rational expectations.

Jehiel’s (2005) concept of analogy-based expectations equilibrium (ABEE)

captures the idea that players’ perception of other players’ strategies is coarse.

In the present context, we can regard  as the action taken by a fictitious

opponent of the DM after observing the history (  1  ). In this con-

text,  defines type ’s information set, whereas  defines type ’s “analogy

partition” (to use Jehiel’s terminology). Two histories belong to the same

cell in this partition if they share the same value of 
. My definition of

equilibrium is consistent with Jehiel’s assumption that type  believes that

the fictitious player’s strategy is measurable with respect to type ’s analogy

partition. Thus, the model in this paper can be formulated as an application

of ABEE.

The model can also be cast in the Bayesian-network language of Spiegler

(2016). The objective distribution  in the baseline model (where  has no

causal effect on ) is consistent with the following DAG:

 ←  → 

- ↑ %


In contrast, type  believes in the subjective causal model (organizing the

variables on which he has data) given by the following DAG:
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\ −→ 

↑ % ↑
 −→ 

According to Spiegler (2016), the subjective belief that this model generates

obeys the Bayesian-network factorization formula

()(\ | )( | )( |   
)

The DM’s conditional belief over  as a consequence of  given  is described

by (2). Equilibrium in the present model is consistent with the notion of

personal equilibrium in Spiegler (2016,2020) when the DM’s subjective causal

model is random.

The Bayesian-network framework in Spiegler (2016) can be subsumed

into the more general concept of Berk-Nash equilibrium due to Esponda and

Pouzo (2016). Adapting that concept to the present environment is feasible

but less straightforward, partly because it calls for an adaptation of how

Kullback-Leibler divergence features in the equilibrium definition.

References

[1] Cinelli, C., A. Forney and J. Pearl (2020), A Crash Course in Good and

Bad Controls, Sociological Methods & Research: 00491241221099552.

[2] Jehiel, P. (2005), Analogy-Based Expectation Equilibrium, Journal of

Economic theory 123, 81-104.

[3] Esponda. I. and D. Pouzo (2016), Berk-Nash Equilibrium: A Framework

for Modeling Agents with Misspecified Models, Econometrica 84, 1093-

1130.

[4] Pearl, J. (2009), Causality: Models, Reasoning and Inference, Cambridge

University Press, Cambridge.

32



[5] Sen, A. (1969), Quasi-transitivity, Rational Choice and Collective Deci-

sions, Review of Economic Studies 36, 381-393.

[6] Spiegler, R. (2016), Bayesian Networks and Boundedly Rational Expec-

tations, Quarterly Journal of Economics 131, 1243-1290.

[7] Spiegler, R. (2020), Behavioral Implications of Causal Misperceptions,

Annual Review of Economics 12, 81-106.

[8] Spiegler, R. (2022), On the Behavioral Consequences of Reverse Causal-

ity, European Economic Review 149: 104258.

33


